256 research outputs found
Fusion of the -Vertex Operators and its Application to Solvable Vertex Models
We diagonalize the transfer matrix of the inhomogeneous vertex models of the
6-vertex type in the anti-ferroelectric regime intoducing new types of q-vertex
operators. The special cases of those models were used to diagonalize the s-d
exchange model\cite{W,A,FW1}. New vertex operators are constructed from the
level one vertex operators by the fusion procedure and have the description by
bosons. In order to clarify the particle structure we estabish new isomorphisms
of crystals. The results are very simple and figure out representation
theoretically the ground state degenerations.Comment: 35 page
Shintani functions, real spherical manifolds, and symmetry breaking operators
For a pair of reductive groups , we prove a geometric criterion
for the space of Shintani functions to be finite-dimensional
in the Archimedean case.
This criterion leads us to a complete classification of the symmetric pairs
having finite-dimensional Shintani spaces.
A geometric criterion for uniform boundedness of is
also obtained.
Furthermore, we prove that symmetry breaking operators of the restriction of
smooth admissible representations yield Shintani functions of moderate growth,
of which the dimension is determined for .Comment: to appear in Progress in Mathematics, Birkhause
Geometric and combinatorial realizations of crystal graphs
For irreducible integrable highest weight modules of the finite and affine
Lie algebras of type A and D, we define an isomorphism between the geometric
realization of the crystal graphs in terms of irreducible components of
Nakajima quiver varieties and the combinatorial realizations in terms of Young
tableaux and Young walls. For affine type A, we extend the Young wall
construction to arbitrary level, describing a combinatorial realization of the
crystals in terms of new objects which we call Young pyramids.Comment: 34 pages, 17 figures; v2: minor typos corrected; v3: corrections to
section 8; v4: minor typos correcte
Quantum R-matrix and Intertwiners for the Kashiwara Algebra
We study the algebra presented by Kashiwara and introduce
intertwiners similar to -vertex operators. We show that a matrix determined
by 2-point functions of the intertwiners coincides with a quantum R-matrix (up
to a diagonal matrix) and give the commutation relations of the intertwiners.
We also introduce an analogue of the universal R-matrix for the Kashiwara
algebra.Comment: 21 page
Crystalizing the Spinon Basis
The quasi-particle structure of the higher spin XXZ model is studied. We
obtained a new description of crystals associated with the level integrable
highest weight modules in terms of the creation operators
at (the crystaline spinon basis). The fermionic character formulas and
the Yangian structure of those integrable modules naturally follow from this
description. We have also derived the conjectural formulas for the multi
quasi-particle states at .Comment: 25 pages, late
Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A
We are interested in the structure of the crystal graph of level Fock
spaces representations of . Since
the work of Shan [26], we know that this graph encodes the modular branching
rule for a corresponding cyclotomic rational Cherednik algebra. Besides, it
appears to be closely related to the Harish-Chandra branching graph for the
appropriate finite unitary group, according to [8]. In this paper, we make
explicit a particular isomorphism between connected components of the crystal
graphs of Fock spaces. This so-called "canonical" crystal isomorphism turns out
to be expressible only in terms of: - Schensted's classic bumping procedure, -
the cyclage isomorphism defined in [13], - a new crystal isomorphism, easy to
describe, acting on cylindric multipartitions. We explain how this can be seen
as an analogue of the bumping algorithm for affine type . Moreover, it
yields a combinatorial characterisation of the vertices of any connected
component of the crystal of the Fock space
Box ball system associated with antisymmetric tensor crystals
A new box ball system associated with an antisymmetric tensor crystal of the
quantum affine algebra of type A is considered. This includes the so-called
colored box ball system with capacity 1 as the simplest case. Infinite number
of conserved quantities are constructed and the scattering rule of two olitons
are given explicitly.Comment: 15 page
On the uniqueness of promotion operators on tensor products of type A crystals
The affine Dynkin diagram of type has a cyclic symmetry. The
analogue of this Dynkin diagram automorphism on the level of crystals is called
a promotion operator. In this paper we show that the only irreducible type
crystals which admit a promotion operator are the highest weight crystals
indexed by rectangles. In addition we prove that on the tensor product of two
type crystals labeled by rectangles, there is a single connected
promotion operator. We conjecture this to be true for an arbitrary number of
tensor factors. Our results are in agreement with Kashiwara's conjecture that
all `good' affine crystals are tensor products of Kirillov-Reshetikhin
crystals.Comment: 31 pages; 8 figure
Asymmetric function theory
The classical theory of symmetric functions has a central position in
algebraic combinatorics, bridging aspects of representation theory,
combinatorics, and enumerative geometry. More recently, this theory has been
fruitfully extended to the larger ring of quasisymmetric functions, with
corresponding applications. Here, we survey recent work extending this theory
further to general asymmetric polynomials.Comment: 36 pages, 8 figures, 1 table. Written for the proceedings of the
Schubert calculus conference in Guangzhou, Nov. 201
- âŠ