186 research outputs found

    Extensions and further applications of the nonlocal Polyakov--Nambu--Jona-Lasinio model

    Full text link
    The nonlocal Polyakov-loop-extended Nambu--Jona-Lasinio (PNJL) model is further improved by including momentum-dependent wave-function renormalization in the quark quasiparticle propagator. Both two- and three-flavor versions of this improved PNJL model are discussed, the latter with inclusion of the (nonlocal) 't Hooft-Kobayashi-Maskawa determinant interaction in order to account for the axial U(1) anomaly. Thermodynamics and phases are investigated and compared with recent lattice-QCD results.Comment: 28 pages, 11 figures, 4 tables; minor changes compared to v1; extended conclusion

    Critical endpoint for deconfinement in matrix and other effective models

    Full text link
    We consider the position of the deconfining critical endpoint, where the first order transition for deconfinement is washed out by the presence of massive, dynamical quarks. We use an effective matrix model, employed previously to analyze the transition in the pure glue theory. If the param- eters of the pure glue theory are unaffected by the presence of dynamical quarks, and if the quarks only contribute perturbatively, then for three colors and three degenerate quark flavors this quark mass is very heavy, m_de \sim 2.5 GeV, while the critical temperature, T_de, barely changes, \sim 1% below that in the pure glue theory. The location of the deconfining critical endpoint is a sensitive test to differentiate between effective models. For example, models with a logarithmic potential for the Polyakov loop give much smaller values of the quark mass, m_de \sim 1 GeV, and a large shift in T_de \sim 10% lower than that in the pure glue theory.Comment: 16 pages; 3 figure

    ODTN: Open Disaggregated Transport Network. Discovery and Control of a Disaggregated Optical Network through Open Source Software and Open APIs

    Get PDF
    ONOS discovers and manages a topology made of Transponders and a dedicated OLS, using standard protocols (NETCONF/RESTCONF) and models (OpenConfig/TAPI). The demo is a joint collaboration, towards production deployment, between 3 operators and 2 equipment vendors

    Chiral Bosons Through Linear Constraints

    Get PDF
    We study in detail the quantization of a model which apparently describes chiral bosons. The model is based on the idea that the chiral condition could be implemented through a linear constraint. We show that the space of states is of indefinite metric. We cure this disease by introducing ghost fields in such a way that a BRST symmetry is generated. A quartet algebra is seen to emerge. The quartet mechanism, then, forces all physical states, but the vacuum, to have zero norm.Comment: 9 page

    Equation of state in the PNJL model with the entanglement interaction

    Full text link
    The equation of state and the phase diagram in two-flavor QCD are investigated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with an entanglement vertex between the chiral condensate and the Polyakov-loop. The entanglement-PNJL (EPNJL) model reproduces LQCD data at zero and finite chemical potential better than the PNJL model. Hadronic degrees of freedom are taken into account by the free-hadron-gas (FHG) model with the volume-exclusion effect due to the hadron generation. The EPNJL+FHG model improves agreement of the EPNJL model with LQCD data particularly at small temperature. The quarkyonic phase survives, even if the correlation between the chiral condensate and the Polyakov loop is strong and hadron degrees of freedom are taken into account. However, the location of the quarkyonic phase is sensitive to the strength of the volume exclusion.Comment: 9 pages, 7 figure

    Charges in Gauge Theories

    Get PDF
    In this article we investigate charged particles in gauge theories. After reviewing the physical and theoretical problems, a method to construct charged particles is presented. Explicit solutions are found in the Abelian theory and a physical interpretation is given. These solutions and our interpretation of these variables as the true degrees of freedom for charged particles, are then tested in the perturbative domain and are demonstrated to yield infra-red finite, on-shell Green's functions at all orders of perturbation theory. The extension to collinear divergences is studied and it is shown that this method applies to the case of massless charged particles. The application of these constructions to the charged sectors of the standard model is reviewed and we conclude with a discussion of the successes achieved so far in this programme and a list of open questions.Comment: 47 pages, LaTeX, 14 figures, uses feynmp, necessary Metapost files included. Review to appear in Pramana, Journal of Physics. Minor LaTeX change to make page numbers visible on "Letter" paper forma

    Holographic Roberge-Weiss Transitions

    Full text link
    We investigate N=4 SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between Z(N) symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in mu^2 when mu^2~0.Comment: 37 pages, 13 figures; minor comments added, to appear in JHE
    • …
    corecore