252 research outputs found

    Observational tests for oscillating expansion rate of the Universe

    Full text link
    We investigate the observational constraints on the oscillating scalar field model using data from type Ia supernovae, cosmic microwave background anisotropies, and baryon acoustic oscillations. According to a Fourier analysis, the galaxy number count NN from redshift zz data indicates that galaxies have preferred periodic redshift spacings. We fix the mass of the scalar field as mϕ=3.2×1031hm_\phi=3.2\times 10^{-31}h eV{\rm eV} such that the scalar field model can account for the redshift spacings, and we constrain the other basic parameters by comparing the model with accurate observational data. We obtain the following constraints: Ωm,0=0.28±0.03\Omega_{m,0}=0.28\pm 0.03 (95% C.L.), Ωϕ,0158\Omega_{\phi,0} -158 (95% C.L.) (in the range ξ0\xi \le 0). The best fit values of the energy density parameter of the scalar field and the coupling constant are Ωϕ,0=0.01\Omega_{\phi,0}= 0.01 and ξ=25\xi= -25, respectively. The value of Ωϕ,0\Omega_{\phi,0} is close to but not equal to 00. Hence, in the scalar field model, the amplitude of the galaxy number count cannot be large. However, because the best fit values of Ωϕ,0\Omega_{\phi,0} and ξ\xi are not 00, the scalar field model has the possibility of accounting for the periodic structure in the NN--zz relation of galaxies. The variation of the effective gravitational constant in the scalar field model is not inconsistent with the bound from observation.Comment: 9 pages, 11 figures, 1 table, Accepted for publication in Physical Review

    A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain

    Get PDF
    Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice.open117318Ysciescopu

    Structure and physical properties of Na4C60 under ambient and high pressures

    Get PDF
    The structure and physical properties of two-dimensional polymeric Na4C60 (body-centered monoclinic, space group I2/m) are studied in a wide temperature region from 12 to 300 K at 1 bar, and in a pressure region up to 53 kbar at 300 K. The temperature dependence of lattice constants suggests a structural anomaly below 100 K where the variation of spin susceptibility is observed from electron spin resonance. The thermal expansion of the unit-cell volume V is smaller than that of monomeric Rb3C60 and K3C60. The compressibility of c is larger than that of a and b, which can be well explained by the repulsion between Na ions. The compressibility of the center-to-center distance in the (10(1) over bar) plane is similar to1/3 times smaller that that in the (101) plane, which can be well explained by the formation of the polymer chains. Further, a possibility of a three-dimensional polymerization is discussed on the basis of the pressure dependence of C-60. . .C-60 distances.</p

    Rest-frame Optical Emission Lines in Far-Infrared Selected Galaxies at z<1.7 from the FMOS-COSMOS Survey

    Get PDF
    We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared selected galaxies in COSMOS and obtain the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at these redshifts. The far-infrared selection results in a sample of galaxies that are massive systems that span a range of metallicities in comparison with previous optically selected surveys, and thus has a higher AGN fraction and better samples the AGN branch. We establish the presence of AGN and starbursts in this sample of (U)LIRGs selected as Herschel-PACS and Spitzer-MIPS detections in two redshift bins (z~0.7 and z~1.5) and test the redshift dependence of diagnostics used to separate AGN from star-formation dominated galaxies. In addition, we construct a low redshift (z~0.1) comparison sample of infrared selected galaxies and find that the evolution from z~1.5 to today is consistent with an evolving AGN selection line and a range of ISM conditions and metallicities from the models of Kewley et al. (2013b). We find that a large fraction of (U)LIRGs are BPT-selected AGN using their new, redshift-dependent classification line. We compare the position of known X-ray detected AGN (67 in total) with the BPT selection and find that the new classification line accurately selects most of these objects (> 70%). Furthermore, we identify 35 new (likely obscured) AGN not selected as such by their X-ray emission. Our results have direct implications for AGN selection at higher redshift with either current (MOSFIRE, KMOS) or future (PFS, MOONS) spectroscopic efforts with near-infrared spectral coverage.Comment: 7 pages, 3 figures, 2 tables. Accepted for publication in The Astrophysical Journal Letter

    Metal-insulator transition at 50 K in Na2C60

    Get PDF
    Temperature dependence of electron spin resonance in Na2C60 was studied in a temperature range from 2 to 350 K. It was shown that Na2C60 was metallic above 50 K and had a metal-insulator transition at 50 K. The center frequency for the Hg(2) Raman mode in Na2C60 at 298 K was close to those in the metallic Rb3C60, K3C60, and Cs3C60, while the linewidth was close to that in the metallic but nonsuperconducting Cs3C60. The Hg(2) mode showed a large blueshift and narrowing at 50 K. The center frequency and the linewidth in the low-temperature region from 50 K were almost the same as those in the insulating C-60 and Rb6C60, which showed the metal-insulator transition at 50 K in Na2C60. The origin of this metal-insulator transition was discussed in terms of the electron-phonon interaction (Jahn-Teller effect) and the electron-electron interaction (Mott-Hubbard picture). [S0163-1829(99)04123-5].</p

    Lagrangian drifter paths and length scales in the tropical Pacific warm pool from 1990 to 1991: with application of fractal techniques

    No full text
    International audienceThis paper presents an analysis of WOCE/TOGA surface drifter paths and its interpretation in conjunction with the west Pacific warm pool water motion. Our interest here lies in the existence of scale invariance in the observed data sets. The analysis proceeds by detecting scale invariance in the drifter paths data, and interpreting the invariance in terms of the statistical second order moment. The range of constant scaling exponent was found to be between 5 days and 10 days, and this range corresponded with the "long tail" of the temporal correlation function in the zonal direction. Velocity covariances in both the zonal and meridional directions were computed, and corresponding diffusivities were 8100 m2/sec meridionally and 41000 m2/sec zonally. Considering the existence of large scale mean flow, it is thought that self-similar energy cascade processes associated with constant scaling exponent may be responsible for the anomalous zonal diffusivity, while the meridional diffusivity may be approximated by ordinary Brownian processes. We suggest that the scale invariance of the WOCE/TOGA surface drifter paths may be a manifestation of energy cascade processes from large scale mean flow to smaller scale irregular flow that is represented by fractional Brownian motion in the zonal direction

    The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium

    Get PDF
    We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at 1.4z1.71.4\lesssim z\lesssim1.7, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range 109.6M/M1011.610^{9.6} \lesssim M_\ast/M_\odot \lesssim 10^{11.6} with those at M>1011 MM_\ast>10^{11}~M_\odot being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density (ne=220130+170 cm3n_e=220^{+170}_{-130}~\mathrm{cm^{-3}}), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies (M1011 MM_\ast\gtrsim10^{11}~M_\odot) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.Comment: 38 pages; Accepted for publication in Ap

    Structure and physical properties of Cs3+alpha C60 (alpha=0.0-1.0) under ambient and high pressures

    Get PDF
    The intermediate phases Cs3+alphaC60 (alpha=0.0-1.0), have been prepared, and their structure and physical properties are studied by x-ray powder diffraction, Raman, ESR, electric conductivity, and ac susceptibility measurements under ambient and high pressures. The x-ray powder diffraction pattern of Cs3+alphaC60 (alpha=0.0-1.0) can be indexed as a mixture of the body-centered-orthorhombic (bco) and cubic (A15) phases. The A15 phase diminishes above 30 kbar. The broad ESR peak due to the conduction electron (c-ESR) is observed only for the phases around alpha=0.0 in Cs3+alphaC60. The resistivity of the Cs3+alphaC60 (alphanot equal0) sample follows the granular metal theory and/or Sheng model even in the sample exhibiting a broad ESR peak. No superconducting transition is observed up to 10.6 kbar in Cs3+alphaC60 (alphanot equal0). These results present that bco phase of Cs3+alphaC60 (alpha=0) is a final candidate for a pressure-induced superconductor.</p

    The FMOS-COSMOS survey of star-forming galaxies at z ~ 1.6. I. H\alpha -based star formation rates and dust extinction

    Full text link
    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4<z<1.71.4<z<1.7. The high-resolution mode is implemented to detect Hα\alpha in emission between 1.61.8μm1.6{\rm -}1.8 \mathrm{\mu m} with fHα4×1017f_{\rm H\alpha}\gtrsim4\times10^{-17} erg cm2^{-2} s1^{-1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα\alpha detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further JJ-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6AHα2.50.6\lesssim A_\mathrm{H\alpha} \lesssim 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission \hbox{Estar(BV)/Eneb(BV)E_\mathrm{star}(B-V)/E_\mathrm{neb}(B-V)} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα\alpha-based main sequence with a slope (0.81±0.040.81\pm0.04) and normalization similar to previous studies at these redshifts.Comment: 6 pages, 4 figures, and 1 table. Published in ApJ Letter
    corecore