403 research outputs found

    Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits

    Full text link
    It is well known that R^N has subspaces of dimension proportional to N on which the \ell_1 norm is equivalent to the \ell_2 norm; however, no explicit constructions are known. Extending earlier work by Artstein--Avidan and Milman, we prove that such a subspace can be generated using O(N) random bits.Comment: 16 pages; minor changes in the introduction to make it more accessible to both Math and CS reader

    To the center of cold spot with Planck

    Full text link
    The structure of the cold spot, of a non-Gaussian anomaly in the cosmic microwave background (CMB) sky first detected by Vielva et al. is studied using the data by Planck satellite. The obtained map of the degree of stochasticity (K-map) of CMB for the cold spot, reveals, most clearly in 100 GHz band, a shell-type structure with a center coinciding with the minima of the temperature distribution. The shell structure is non-Gaussian at a 4\sigma confidence level. Such behavior of the K-map supports the void nature of the cold spot. The applied method can be used for tracing voids that have no signatures in redshift surveys.Comment: A & A (in press), 4 pages, 5 figures; to match the published versio

    Expected Supremum of a Random Linear Combination of Shifted Kernels

    Full text link
    We address the expected supremum of a linear combination of shifts of the sinc kernel with random coefficients. When the coefficients are Gaussian, the expected supremum is of order \sqrt{\log n}, where n is the number of shifts. When the coefficients are uniformly bounded, the expected supremum is of order \log\log n. This is a noteworthy difference to orthonormal functions on the unit interval, where the expected supremum is of order \sqrt{n\log n} for all reasonable coefficient statistics.Comment: To appear in the Journal of Fourier Analysis and Application

    Elliptic CMB Sky

    Full text link
    The ellipticity of the anisotropy spots of the Cosmic Microwave Background measured by the Wilkinson Microwave Anisotropy Probe (WMAP) has been studied. We find an average ellipticity of about 2, confirming with a far larger statistics similar results found first for the COBE-DMR CMB maps, and then for the BOOMERanG CMB maps. There are no preferred directions for the obliquity of the anisotropy spots. The average ellipticity is independent of temperature threshold and is present on scales both smaller and larger than the horizon at the last scattering. The measured ellipticity characteristics are consistent with being the effect of geodesics mixing occurring in an hyperbolic Universe, and can mark the emergence of CMB ellipticity as a new observable constant describing the Universe. There is no way of simulating this effect. Therefore we cannot exclude that the observed behavior of the measured ellipticity can result from a trivial topology in the popular flat Λ\Lambda-CDM model, or from a non-trivial topology.Comment: 10 pages, 5 figures, the version to appear in Mod.Phys.Lett.

    Messier 81's Planck view vs its halo mapping

    Full text link
    This paper is a follow-up of a previous paper about the M82 galaxy and its halo based on Planck observations. As in the case of M82, so also for the M81 galaxy a substantial North-South and East-West temperature asymmetry is found, extending up to galactocentric distances of about 1.51.5^\circ. The temperature asymmetry is almost frequency independent and can be interpreted as a Doppler-induced effect related to the M81 halo rotation and/or triggered by the gravitational interaction of the galaxies within the M81 Group. Along with the analogous study of several nearby edge-on spiral galaxies, the CMB temperature asymmetry method thus is shown to act as a direct tool to map the galactic haloes and/or the intergalactic bridges, invisible in other bands or by other methods.Comment: 5 pages, 3 figures, in press in Astronomy and Astrophysics, Main Journa

    Planck's confirmation of the M31 disk and halo rotation

    Full text link
    Planck's data acquired during the first 15.4 months of observations towards both the disk and halo of the M31 galaxy are analyzed. We confirm the existence of a temperature asymmetry, previously detected by using the 7-year WMAP data, along the direction of the M31 rotation, therefore indicative of a Doppler-induced effect. The asymmetry extends up to about 10 degrees (about 130 kpc) from the M31 center. We also investigate the recent issue raised in Rubin and Loeb (2014) about the kinetic Sunyaev-Zeldovich effect from the diffuse hot gas in the Local Group, predicted to generate a hot spot of a few degrees size in the CMB maps in the direction of M31, where the free electron optical depth gets the maximum value. We also consider the issue whether in the opposite direction with respect to the M31 galaxy the same effect induces a minimum in temperature in the Planck's maps of the sky. We find that the Planck's data at 100 GHz show an effect even larger than that expected.Comment: 4 pages, 1 table, 2 figures, in press as a Letter in A&

    Planck view of the M82 galaxy

    Full text link
    Planck data towards the galaxy M82 are analyzed in the 70, 100 and 143 GHz bands. A substantial north-south and East-West temperature asymmetry is found, extending up to 1 degree from the galactic center. Being almost frequency-independent, these temperature asymmetries are indicative of a Doppler-induced effect regarding the line-of-sight dynamics on the halo scale, the ejections from the galactic center and, possibly, even the tidal interaction with M81 galaxy. The temperature asymmetry thus acts as a model-independent tool to reveal the bulk dynamics in nearby edge-on spiral galaxies, like the Sunyaev-Zeldovich effect for clusters of galaxies.Comment: 4 pages, 3 figures, in press on A&

    Planck revealed bulk motion of Centaurus A lobes

    Full text link
    Planck data towards the active galaxy Centaurus A are analyzed in the 70, 100 and 143 GHz bands. We find a temperature asymmetry of the northern radio lobe with respect to the southern one that clearly extends at least up to 5 degrees from the Cen A center and diminishes towards the outer regions of the lobes. That transparent parameter - the temperature asymmetry - thus has to carry a principal information, i.e. indication on the line-of-sight bulk motion of the lobes, while the increase of that asymmetry at smaller radii reveals the differential dynamics of the lobes as expected at ejections from the center.Comment: 4 pages, 3 figures, Astronomy & Astrophysics, Letter to the Editor (in press
    corecore