39 research outputs found

    An Ecoregional Context for Forest Management on National Wildlife Refuges of the Upper Midwest, USA

    Get PDF
    To facilitate forest planning and management on National Wildlife Refuges, we synthesized multiple data sources to describe land ownership patterns, land cover, landscape pattern, and changes in forest composition for four ecoregions and their associated refuges of the Upper Midwest. We related observed patterns to ecological processes important for forest conservation and restoration, with specific attention to refuge patterns of importance for forest landbirds of conservation priority. The large amount of public land within the ecoregions (31–80%) suggests that opportunities exist for coarse and meso-scale approaches to conserving and restoring ecological processes affecting the refuges, particularly historical fire regimes. Forests dominate both ecoregions and refuges, but refuge forest patches are generally larger and more aggregated than in associated ecoregions. Broadleaf taxa have increased in dominance in the ecoregions and displaced fire-dependent taxa such as pine (Pinus spp.) and other coniferous species; these changes in forest composition have likely also affected refuge forests. Despite compositional changes, larger forest patches on refuges suggests that they may provide better habitat for area-sensitive forest landbirds of mature, compositionally diverse forests than surrounding lands if management continues to promote increased patch size. We reason that although finescale research and monitoring for species of conservation priority is important, broad scale (ecoregional) assessments provide crucial context for effective forest and wildlife management in protected areas

    Forest ecosystem properties emerge from interactions of structure and disturbance

    Get PDF
    Forest structural diversity and its spatiotemporal variability are constrained by environmental and biological factors, including species pools, climate, land-use history, and legacies of disturbance regimes. These factors influence forest responses to disturbances and their interactions with structural diversity, potentially creating structurally mediated emergent properties at local to continental spatial scales and over evolutionary time. Here, we present a conceptual framework for exploring the emergent properties that arise from interactions between forest structural diversity and disturbances. We synthesize and present definitions for key terms, including emergent property, disturbance, and resilience, and highlight various types and examples of emergent properties, such as (1) interactions with species composition, (2) interactions with disturbance frequency and intensity, and (3) evolutionary changes to communities. Although emergent properties in forest ecosystems remain poorly understood, we describe a foundation for study and applied management of forest structural diversity to enhance forest restoration and resilience

    A theoretical framework for the ecological role of three-dimensional structural diversity

    Get PDF
    The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales

    Legacy of pre-disturbance spatial pattern determines early structural diversity following severe disturbance in mountain spruce forests in Czech Republic

    Get PDF
    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how predisturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, predisturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights

    Initial Public Offerings and the Firm Location

    Get PDF
    The firm geographic location matters in IPOs because investors have a strong preference for newly issued local stocks and provide abnormal demand in local offerings. Using equity holdings data for more than 53,000 households, we show the probability to participate to the stock market and the proportion of the equity wealth is abnormally increasing with the volume of the IPOs inside the investor region. Upon nearly the universe of the 167,515 going public and private domestic manufacturing firms, we provide consistent evidence that the isolated private firms have higher probability to go public, larger IPO underpricing cross-sectional average and volatility, and less pronounced long-run under-performance. Similar but opposite evidence holds for the local concentration of the investor wealth. These effects are economically relevant and robust to local delistings, IPO market timing, agglomeration economies, firm location endogeneity, self-selection bias, and information asymmetries, among others. Findings suggest IPO waves have a strong geographic component, highlight that underwriters significantly under-estimate the local demand component thus leaving unexpected money on the table, and support state-contingent but constant investor propensity for risk

    Landscape ecosystems of northern lower Michigan and the occurrence and management of the Kirtland's

    Full text link
    Master of ScienceForest EcologyUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/114264/1/39015043175549.pd

    Potential Impacts of Emerald Ash Borer Biocontrol on Ash Health and Recovery in Southern Michigan

    No full text
    Emerald ash borer (EAB) is an invasive beetle that kills native North American ash species, threatening their persistence. A classical biological control program for EAB was initiated in 2007 with the release of three specialized EAB parasitoids. Monitoring changes in the health and regeneration of ash where EAB biocontrol agents have been released is critical for assessing the success of EAB biocontrol and predicting future changes to the ash component of North American forests. We sampled release and control plots across southern Michigan over a three-year period to measure ash health and recruitment to begin assessing the long-term impact of EAB biological control on ash populations. We noted a reduced mortality of larger trees between 2012 and 2015 in release plots compared to control plots and increases in ash diameter, but our results were otherwise inconsistent. Ash regeneration was generally higher in release plots compared to control plots but highly variable among sites, suggesting some protection of ash saplings from EAB by parasitoids. We conclude that EAB biocontrol is likely to have a positive effect on ash populations, but that the study duration was not long enough to definitively deduce the long-term success of the biocontrol program in this region

    Carbon cycling at the landscape scale: the effect of changes in climate and fire frequency on age distribution, stand structure, and net ecosystem production.

    Get PDF
    Understanding the interactions between climate, fire and forest characteristics-- and how carbon dynamics are affected by these factors--remains an important challenge in ecology. As the size and severity of fires in the western US continues to increase (Westerling et al. 2006), it has become increasingly important to understand carbon dynamics in response to fire. In this study, we investigated these key interactions in the landscape of Yellowstone National Park (YNP). We asked how initial post-fire heterogeneity in forest structure (especially tree density and stand age) controls carbon dynamics over the full life cycle of individual forest stands, and how climate-mediated changes in the fire regime might potentially alter the behavior of the YNP ecosystem as a net sink or source of carbon in the global carbon cycle. We focused on net ecosystem production (NEP), which is the annual net change in carbon stored in the ecosystem— that is, the difference between net primary production (NPP) and heterotrophic respiration. Our research embraced a landscape perspective by considering how NEP varies with spatial variability in structure and forest development. To address our overarching question, we combined a broad-scale chronosequence study of 77 stands distributed widely across the YNP landscape with simulation modeling that incorporated projected climate change. We also developed new allometric equations to predict biomass of the lodgepole pine trees in this region, since existing equations (developed in other regions) were found to be inadequate. Our research has produced one MS thesis (Arcano 2005), two peer-reviewed journal articles to date (Kashian et al. 2006, Smithwick et al. 2008), one submitted manuscript (Tinker et al. Submitted), two in draft form (Kashian et al. Draft, Smithwick et al. Draft), and six manuscripts are in preparation. In the remainder of this report, we highlight some of the key findings

    Long-term aspen cover change in the western US

    No full text
    Quaking aspen (Populus tremuloides Michx.) is one of the most important tree species in the western United States due to its role in biodiversity, tourism, and other ecological and aesthetic values. This paper provides an overview of the drivers of long-term aspen cover change in the western US and how these drivers operate on diverse spatial and temporal scales. There has been substantial concern that aspen has been declining in the western US, but trends of aspen persistence vary both geographically and temporally. One important goal for future research is to better understand long-term and broad-scale changes in aspen cover across its range. Inferences about aspen dynamics are contingent on the spatial and temporal scales of inquiry, thus differences in scope and design among studies partly explain variation among conclusions. For example, major aspen decline has been noted when the spatial scale of inquiry is relatively small and the temporal scale of inquiry is relatively short. Thus, it is important to consider the scale of research when addressing aspen dynamics.Successional replacement of aspen by conifer species is most pronounced in systems shaped by long fire intervals and can thus be seen as part of a normal, long-term fluctuation in forest composition. Aspen decline was initially reported primarily at the margins of aspen\u27s distribution, but may be becoming more ubiquitous due to the direct effects of climate (e.g. drought). In contrast, the indirect effects of recent climate (e.g. forest fires, bark beetle outbreaks, and compounded disturbances) appear to favor aspen and may facilitate expansion of this forest type. Thus, future aspen trends are likely to depend on the net result of the direct and indirect effects of altered climate. © 2013 Elsevier B.V

    Long-term aspen cover change in the western US

    No full text
    Quaking aspen (Populus tremuloides Michx.) is one of the most important tree species in the western United States due to its role in biodiversity, tourism, and other ecological and aesthetic values. This paper provides an overview of the drivers of long-term aspen cover change in the western US and how these drivers operate on diverse spatial and temporal scales. There has been substantial concern that aspen has been declining in the western US, but trends of aspen persistence vary both geographically and temporally. One important goal for future research is to better understand long-term and broad-scale changes in aspen cover across its range. Inferences about aspen dynamics are contingent on the spatial and temporal scales of inquiry, thus differences in scope and design among studies partly explain variation among conclusions. For example, major aspen decline has been noted when the spatial scale of inquiry is relatively small and the temporal scale of inquiry is relatively short. Thus, it is important to consider the scale of research when addressing aspen dynamics.Successional replacement of aspen by conifer species is most pronounced in systems shaped by long fire intervals and can thus be seen as part of a normal, long-term fluctuation in forest composition. Aspen decline was initially reported primarily at the margins of aspen\u27s distribution, but may be becoming more ubiquitous due to the direct effects of climate (e.g. drought). In contrast, the indirect effects of recent climate (e.g. forest fires, bark beetle outbreaks, and compounded disturbances) appear to favor aspen and may facilitate expansion of this forest type. Thus, future aspen trends are likely to depend on the net result of the direct and indirect effects of altered climate. © 2013 Elsevier B.V
    corecore