401 research outputs found

    Phase Diagram of alpha-Helical and beta-Sheet Forming Peptides

    Full text link
    The intrinsic property of proteins to form structural motifs such as alpha-helices and beta-sheets leads to a complex phase behavior in which proteins can assemble into various types of aggregates including crystals, liquidlike phases of unfolded or natively folded proteins, and amyloid fibrils. Here we use a coarse-grained protein model that enables us to perform Monte Carlo simulations for determining the phase diagram of natively folded alpha-helical and unfolded beta-sheet forming peptides. The simulations reveal the existence of various metastable peptide phases. The liquidlike phases are metastable with respect to the fibrillar phases, and there is a hierarchy of metastability

    Nucleation of colloids and macromolecules: does the nucleation pathway matter?

    Full text link
    A recent description of diffusion-limited nucleation based on fluctuating hydrodynamics that extends classical nucleation theory predicts a very non-classical two-step scenario whereby nucleation is most likely to occur in spatially-extended, low-amplitude density fluctuations. In this paper, it is shown how the formalism can be used to determine the maximum probability of observing \emph{any} proposed nucleation pathway, thus allowing one to address the question as to their relative likelihood, including of the newly proposed pathway compared to classical scenarios. Calculations are presented for the nucleation of high-concentration bubbles in a low-concentration solution of globular proteins and it is found that the relative probabilities (new theory compared to classical result) for reaching a critical nucleus containing NcN_c molecules scales as eNc/3e^{-N_c/3} thus indicating that for all but the smallest nuclei, the classical scenario is extremely unlikely.Comment: 7 pages, 5 figure

    Heterogeneous condensation of the Lennard-Jones vapor onto a nanoscale seed particle

    Full text link
    The heterogeneous condensation of a Lennard-Jones vapor onto a nanoscale seed particle is studied using molecular dynamics simulations. Measuring the nucleation rate and the height of the free energy barrier using the mean first passage time method shows that the presence of a weakly interacting seed has little effect on the work of forming very small cluster embryos but accelerates the rate by lowering the barrier for larger clusters. We suggest that this results from a competition between the energetic and entropic features of cluster formation in the bulk and at the heterogeneity. As the interaction is increased, the free energy of formation is reduced for all cluster sizes. We also develop a simple phenomenological model of film formation on a small seed that captures the general features of the nucleation process for small heterogeneities. A comparison of our simulation results with the model shows that heterogeneous classical nucleation theory provides a good estimate of the critical size of the film but significantly over-estimates the size of the barrier.Comment: 9 pages, 10 figures, In Print J. Chem. Phy

    Nucleation in scale-free networks

    Full text link
    We have studied nucleation dynamics of the Ising model in scale-free networks with degree distribution P(k)kγP(k)\sim k^{-\gamma} by using forward flux sampling method, focusing on how the network topology would influence the nucleation rate and pathway. For homogeneous nucleation, the new phase clusters grow from those nodes with smaller degree, while the cluster sizes follow a power-law distribution. Interestingly, we find that the nucleation rate RHomR_{Hom} decays exponentially with the network size NN, and accordingly the critical nucleus size increases linearly with NN, implying that homogeneous nucleation is not relevant in the thermodynamic limit. These observations are robust to the change of γ\gamma and also present in random networks. In addition, we have also studied the dynamics of heterogeneous nucleation, wherein ww impurities are initially added, either to randomly selected nodes or to targeted ones with largest degrees. We find that targeted impurities can enhance the nucleation rate RHetR_{Het} much more sharply than random ones. Moreover, ln(RHet/RHom)\ln (R_{Het}/R_{Hom}) scales as wγ2/γ1w^{\gamma-2/\gamma-1} and ww for targeted and random impurities, respectively. A simple mean field analysis is also present to qualitatively illustrate above simulation results.Comment: 7 pages, 5 figure

    Stochastic self-assembly of incommensurate clusters

    Full text link
    We examine the classic problem of homogeneous nucleation and growth by deriving and analyzing a fully discrete stochastic master equation. Upon comparison with results obtained from the corresponding mean-field Becker-D\"{o}ring equations we find striking differences between the two corresponding equilibrium mean cluster concentrations. These discrepancies depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass incommensurability arises, a single remainder particle can "emulsify" or "disperse" the system by significantly broadening the mean cluster size distribution. This finite-sized broadening effect is periodic in the total mass of the system and can arise even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. For such finite ratios we show that homogeneous nucleation in the limit of large, closed systems is not accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl

    Crystal nucleation and cluster-growth kinetics in a model glass under shear

    Full text link
    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency

    Systematically extending classical nucleation theory

    Full text link
    The foundation for any discussion of first-order phse transitions is Classical Nucleation Theory(CNT). CNT, developed in the first half of the twentieth century, is based on a number of heuristically plausible assumtptions and the majority of theoretical work on nucleation is devoted to refining or extending these ideas. Ideally, one would like to derive CNT from a more fundamental description of nucleation so that its extension, development and refinement could be developed systematically. In this paper, such a development is described based on a previously established (Lutsko, JCP 136:034509, 2012 ) connection between Classical Nucleation Theory and fluctuating hydrodynamics. Here, this connection is described without the need for artificial assumtions such as spherical symmetry. The results are illustrated by application to CNT with moving clusters (a long-standing problem in the literature) and the constructrion of CNT for ellipsoidal clusters

    Approaching equilibrium and the distribution of clusters

    Full text link
    We investigate the approach to stable and metastable equilibrium in Ising models using a cluster representation. The distribution of nucleation times is determined using the Metropolis algorithm and the corresponding ϕ4\phi^{4} model using Langevin dynamics. We find that the nucleation rate is suppressed at early times even after global variables such as the magnetization and energy have apparently reached their time independent values. The mean number of clusters whose size is comparable to the size of the nucleating droplet becomes time independent at about the same time that the nucleation rate reaches its constant value. We also find subtle structural differences between the nucleating droplets formed before and after apparent metastable equilibrium has been established.Comment: 22 pages, 16 figure

    Analysis of nucleation using mean first-passage time data from molecular dynamics simulation

    Get PDF
    We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the separation between time scales for nucleation and growth is small, due to either a small free energy barrier or a large system size. The method is made computationally practical by an approximation of the first-passage time distribution based on its cumulant expansion. Using this approximation, the MFPT of the model can be fit to data from molecular dynamics simulation in order to estimate valuable kinetic parameters, including the free energy barrier, critical nucleus size, and monomer attachment pre-factor, as well as the steady-state rates of nucleation and growth. The method is demonstrated using a case study on nucleation of n-eicosane crystals from the melt. For this system, we found that the observed distribution of first-passage times do not follow an exponential distribution at short times, rendering it incompatible with the assumptions made by some other methods. Using our method, the observed distribution of first-passage times was accurately described, and reasonable estimates for the kinetic parameters and steady-state rates of nucleation and growth were obtained

    Nucleation and crystallization process of silicon using Stillinger-Weber potential

    Full text link
    We study the homogeneous nucleation process in Stillinger-Weber silicon in the NVT ensemble. A clear first-order transition from the liquid to crystal phase is observed thermodynamically with kinetic and structural evidence of the transformation. At 0.75 T_m, the critical cluster size is about 175 atoms. The lifetime distribution of clusters as a function of the maximum size their reach follows an inverse gaussian distribution as was predicted recently from the classical theory of nucleation (CNT). However, while there is a qualitative agreement with the CNT, the free energy curve obtained from the simulations differs significantly from the theoretical predictions, suggesting that the low-density liquid phase found recently could play a role in the nucleation process.Comment: 21 page
    corecore