
Analysis of nucleation using mean first-passage time data from molecular dynamics
simulation
David A. Nicholson and Gregory C. Rutledge

Citation: The Journal of Chemical Physics 144, 134105 (2016); doi: 10.1063/1.4945256
View online: http://dx.doi.org/10.1063/1.4945256
View Table of Contents: http://aip.scitation.org/toc/jcp/144/13
Published by the American Institute of Physics

Articles you may be interested in
Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-
Jones liquid
The Journal of Chemical Physics 131, 104503 (2009); 10.1063/1.3216867

New method to analyze simulations of activated processes
The Journal of Chemical Physics 126, 134103 (2007); 10.1063/1.2713401

Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial
extension
The Journal of Chemical Physics 145, 244903 (2016); 10.1063/1.4972894

 Crystal nucleation as the ordering of multiple order parameters
The Journal of Chemical Physics 145, 211801 (2016); 10.1063/1.4962166

Editorial: The Future of Chemical Physics Conference 2016
The Journal of Chemical Physics 145, 220401 (2016); 10.1063/1.4968588

Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics
and accurate long time dynamics
The Journal of Chemical Physics 145, 224107 (2016); 10.1063/1.4971430

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83235557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Nicholson%2C+David+A
http://aip.scitation.org/author/Rutledge%2C+Gregory+C
/loi/jcp
http://dx.doi.org/10.1063/1.4945256
http://aip.scitation.org/toc/jcp/144/13
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.3216867
http://aip.scitation.org/doi/abs/10.1063/1.3216867
http://aip.scitation.org/doi/abs/10.1063/1.2713401
http://aip.scitation.org/doi/abs/10.1063/1.4972894
http://aip.scitation.org/doi/abs/10.1063/1.4972894
http://aip.scitation.org/doi/abs/10.1063/1.4962166
http://aip.scitation.org/doi/abs/10.1063/1.4968588
http://aip.scitation.org/doi/abs/10.1063/1.4971430
http://aip.scitation.org/doi/abs/10.1063/1.4971430


THE JOURNAL OF CHEMICAL PHYSICS 144, 134105 (2016)

Analysis of nucleation using mean first-passage time data from molecular
dynamics simulation

David A. Nicholson and Gregory C. Rutledge
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

(Received 16 February 2016; accepted 16 March 2016; published online 7 April 2016)

We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics
obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for
the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size
dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the
separation between time scales for nucleation and growth is small, due to either a small free energy
barrier or a large system size. The method is made computationally practical by an approximation
of the first-passage time distribution based on its cumulant expansion. Using this approximation,
the MFPT of the model can be fit to data from molecular dynamics simulation in order to estimate
valuable kinetic parameters, including the free energy barrier, critical nucleus size, and monomer
attachment pre-factor, as well as the steady-state rates of nucleation and growth. The method
is demonstrated using a case study on nucleation of n-eicosane crystals from the melt. For this
system, we found that the observed distribution of first-passage times do not follow an exponential
distribution at short times, rendering it incompatible with the assumptions made by some other
methods. Using our method, the observed distribution of first-passage times was accurately described,
and reasonable estimates for the kinetic parameters and steady-state rates of nucleation and growth
were obtained. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945256]

I. INTRODUCTION

Most first order phase transitions are characterized by
a kinetic barrier that is crossed upon conversion from old
phase to new phase. In this case, the transition is a nucleation-
mediated process that occurs through stochastic fluctuations
giving rise to formation of clusters of the new phase. The
conventional reaction coordinate in such nucleation-mediated
processes is the size of the cluster. The kinetic barrier arises
from the competition between the driving force for formation
of the new phase and an interfacial free energy penalty, the
balance of which inhibits the growth of small, subcritical
clusters due to their large specific surface areas, but allows
large, supercritical clusters to grow. The critical nucleus size
n∗ marks the transition state at the top of the barrier. A
nucleation event occurs when a cluster of size greater than n∗

arises, surpassing the kinetic barrier and precipitating a period
of rapid cluster growth.

Despite its importance to the overall kinetics of the phase
change, nucleation is difficult to study experimentally due to
the small spatiotemporal scale at which it occurs. Molecular-
level simulation methods, on the other hand, are readily
applied to phenomena that occur at small time- and length-
scales, rendering them effective for nucleation studies.1,2 In
particular, molecular dynamics (MD) has proven useful for
kinetic studies; the method has been applied to transitions
ranging from the condensation of liquid from the vapor of
a Lennard-Jones fluid,3 to more complex transitions such
as the crystallization of ice,4 n-alkanes,5 and NaCl.6 In an
MD simulation, time advances linearly, making the dynamics

of a simulated nucleation event analogous to dynamics in an
experimental phase change. Due to the computational expense
of MD, studies are typically conducted at deep supercooling
or high superheating in order to observe a nucleation event
within a reasonable time frame.1 Alternative methods that do
not preserve the linear advancement in time, including linear
response,7,8 metadynamics,9 and transition-path sampling,10

have been developed in order to facilitate kinetic studies of
slower nucleation events.1,2 These methods are promising,
but they come with assumptions regarding underlying time
scales7,8 and other theoretical challenges, particularly with
regard to the identification of suitable order parameters.9,10

Where applicable, MD remains a method of choice for the
simulation of phase change kinetics at the molecular level
and serves as an important point of comparison for emerging
methods.

Despite the simplicity of MD, a fundamental challenge
in the analysis of MD data arises from the fact that the
equations that govern nucleation kinetics, i.e., the master
equation11 or Fokker-Planck equation,12 do not permit closed-
form solutions for the time-evolution of a reaction coordinate.
As a result, simplifying assumptions are often invoked, such
as a large separation between the time scales of nucleation
and growth. The methods proposed by Bartell and Wu13 and
Wedekind et al.14 invoke this assumption in order to estimate
the nucleation rate, critical nucleus size, and Zeldovich factor,
which is related to the curvature of the free energy surface
around the critical nucleus size, from MD simulations. The
method described by Wedekind et al.14 is based on the mean
first-passage time (MFPT) of the largest cluster, obtained from
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a large set of independent nucleation runs, and is applicable
when the characteristic time scale for nucleation is much
larger than the time scale for growth in the system under
study. The relationship between time scales is dependent on
both the size of the kinetic barrier to nucleation and the
system size. The system size effect arises from the fact that a
successful nucleation event is the eventual result of many trials
to form a supercritical cluster, where each trial initiates from
a single monomer. As a system becomes larger it contains
more monomers, thus allowing for more trials in a given unit
of time. As a result, the time scale for nucleation decreases
with increasing system size. Once a supercritical cluster is
formed, however, it grows at a rate that is independent of
system size, leaving the time scale for growth unchanged.
Therefore, as the system size is increased, the separation
of time scales is diminished. When the separation becomes
too small, due to a combination of the free energy barrier
and system size, the assumptions made in the MFPT-based
method of Wedekind et al.14 can no longer be expected to
hold.15 Alternative methods have been employed to study
systems with very rapid nucleation, including the methods of
Yasuoka and Matsumoto,3 and Mokshin and Galimzyanov.16

These methods are applicable when many nucleation events
can be observed in a single system, allowing for the evaluation
of the time between subsequent events.

In this paper, we introduce an alternative method for
analyzing nucleation data on the MFPT that can be applied to
systems where the separation of time scales for nucleation
and growth is small, either due to a small free energy
barrier or large system size. We invoke a stochastic model
for the nucleation process governed by a birth-death master
equation and make use of Gillespie’s model for the system
size dependence of first-passage statistics.17 Parameterization
of this model to MFPT data from MD simulations yields
estimates for valuable kinetic quantities, including the free
energy barrier, critical nucleus size, nucleation rate, and a
characteristic growth rate. In order to make this procedure
computationally practical, we report an efficient method to
evaluate the first-passage time distribution (FPTD) based
on its cumulant expansion. This method is not specifically
restricted to nucleation and may prove useful for computing
the FPTD for other physical processes that follow a birth-death
master equation, including phenomena in chemical kinetics18

and biology.19

II. THEORY

A. Stochastic model

The stochastic nucleation model employed here describes
the time-evolution of cluster formation from an initial state
with N monomers. A cluster may consist of one or more
monomers, and monomers are equivalent to clusters of size 1.
The model depends explicitly on N and contains three time-
independent parameters: the monomer attachment pre-factor
f1, the critical nucleus size n∗, and the critical free energy
barrier β∆G∗. The model follows closely that presented by
Shugard and Reiss20 and Gillespie.17 We first review the model
as presented by them, along with simplifications that follow

from the literature on the topic of birth-death processes. Per
Gillespie,17 the following assumptions are made at the outset:

i. Clusters evolve in time through the attachment or
detachment of a single monomer. The rates of these
events are time-independent and follow the law of mass
action.

ii. The concentration of monomers C1 is approximately
constant over time.

iii. The total number of clusters in the system is approximately
constant over time, and approximately equal to the total
number of monomers in the system, N .

The first assumption is known as the Szilard model and is
frequently employed in kinetic nucleation theory.11 Following
this assumption, clustering occurs through bimolecular
attachment Xn + X1 → Xn+1, and unimolecular detachment,
Xn → X1 + Xn−1, steps, leading to the modified Becker-
Döring equations of Penrose and Oliver.21 These equations
present a good model for the physical system, but they are
nonlinear and stiff22 and thus difficult to solve.

The second assumption follows from the notion that
in the nucleation stage the system is primarily composed
of monomers and results in a drastic simplification of
the equations. Under this condition, any single cluster is
nearly completely surrounded by monomers, and the rate
of attachment to the cluster can therefore be approximated
by unimolecular steps, including attachment Xn → Xn+1 with
rate f (n) and detachment Xn → Xn−1 with rate g(n). This
assumption yields the standard Becker-Döring equations,23

which have the form of the birth-death master equation for
the transient cluster size distribution C(n, t),

∂C(1, t)
∂t

= 0, (1a)

∂C(n, t)
∂t

= f (n − 1)C(n − 1, t) + g(n + 1)
×C(n + 1, t) − ( f (n) + g(n))C(n, t). (1b)

Under assumption (ii) the total mass in the system is not
conserved; however, if the system is composed predominantly
of monomers, the additional mass associated with clusters of
size n > 1 is taken to be negligible.

The third assumption is a necessary consequence of
assumptions (i) and (ii) under an initial condition where there
are initially N monomers in the system.17 It asserts that
nucleation in a system which initially contains N monomers
behaves as a system with N clusters. This number is an
overestimate of the number of clusters, but the degree of
overestimation is small in a system that is composed primarily
of monomers.

The rates of attachment to and detachment from a cluster
of size n are related to each other by the stationary solution
to the birth-death master equation. The flux for the transition
n → n + 1 is

I(n, t) = f (n)C(n, t) − g(n + 1)C(n + 1, t). (2)

The stationary, or equilibrium, solution Ceq(n) is obtained
under zero flux, I(n, t) = 0, and is equivalent to the detailed
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balance condition for a step-wise process,

f (n)Ceq(n) = g(n + 1)Ceq(n + 1), (3a)

f (n)e−β∆G(n) = g(n + 1)e−β∆G(n+1). (3b)

The expression in Eq. (3b) is obtained from an equilibrium
cluster distribution that follows a Boltzmann distribution,
e.g., Ceq(n) = C1e−β∆G(n) where β∆G(n) is the free energy of
forming a cluster of size n with β∆G(1) = 0, and the value C1
is the time-independent concentration of monomers. The free
energy can be expressed using the capillary approximation
for a 3 dimensional cluster with a barrier height ∆G∗ and a
critical nucleus size n∗24

β∆G(n) = β∆G∗

3
(

n2/3 − 1
(n∗)2/3

)
− 2

(
n − 1

n∗

)
. (4)

The rate of attachment to a cluster that is surrounded by a
bath of monomers is expected to scale as the surface area of
the cluster; assuming the cluster shape to be static, the size
dependence is

f (n) = f1n2/3. (5)

The value f (1) = f1 is the monomer attachment pre-factor,
which reflects the frequency at which a monomer is added

to a labeled monomer. With these relationships, the evolution
of a single cluster under Eq. (1) is completely specified by
the choice for the parameters β∆G∗, n∗ and f1, along with a
reflecting boundary condition, g(1) = 0, that prevents removal
of monomers from the system. None of these three parameters
depend on system size, due to assumptions (i) and (ii).

For a single cluster evolving according to Eq. (1) the
first-passage time is defined as the first time T(n0 → n) that a
cluster reaches size n given that it started at size n0 at t = 0

T(n0 → n) = min { t | X(t) = n,X(0) = n0} . (6)

For a given set of conditions {n0,n}, the first-passage time
T(n0 → n) is a random variable governed by a probability
density function fT(t; n0 → n), referred to as the first-passage
time distribution (FPTD). The general form of fT(t; n0 → n)
for arbitrary n0 is known,17,20 but expensive to compute, and
numerically unstable.25 For the special case of n0 = 1, which
is of primary interest for the model described here, the FPTD
takes on a comparatively simple form. T(1 → n) has the same
distribution as a sum of n − 1 exponential random variables
with rate parameters: {λ(n)

1 , λ
(n)
2 , . . . , λ

(n)
n−1}.26,27 These rates

are the eigenvalues of −P(n), where P(n) is the tridiagonal
generator matrix on {1,2, . . . ,n − 1}

P(n) =



− f (1) g(2)
f (1) −( f (2) + g(2)) g(3)

f (2) . . .
. . .

. . .
. . . g(n − 1)

f (n − 2) −( f (n − 1) + g(n − 1))



. (7)

The eigenvalues are distinct and positive27 and may thus
be ordered as 0 < λ

(n)
1 < λ

(n)
2 < · · · < λ

(n)
n−1. The distribution

of the sum of exponential random variables is the
hypoexponential distribution, yielding the following form for
the FPTD:28

fT(t; 1 → n) =
n−1
k=1

*.
,
λ
(n)
k

e−λ
(n)
k

t
n−1

j=1, j,k

λ
(n)
j

λ
(n)
j − λ

(n)
k

+/
-
. (8)

The cumulative distribution function FT(1; 1 → n)
=

t
0

fT(t ′; 1 → n)dt ′ denotes the probability that a single

cluster starting at the monomer state at time zero has reached
size n at time t; the complementary cumulative distribution
function, F̄T(t; 1 → n) = 1 − FT(t; 1 → n), is the probability
the cluster has not yet reached size n. The form of the
complementary cumulative distribution function follows from
Eq. (8),

F̄T(t; 1 → n) =
n−1
k=1

*.
,
e−λ

(n)
k

t
n−1

j=1, j,k

λ
(n)
j

λ
(n)
j − λ

(n)
k

+/
-
. (9)

Up to this point, the distributions have described the
first-passage time for a single cluster. In order to find
the FPTD of the largest cluster, consider a system of N
independently evolving clusters each of which is initially of
size 1. Following Gillespie’s assmuptions,17 the largest of
N independent clusters corresponds to the largest cluster in
a system that initially contains N monomers, which is the
reaction coordinate used for the analysis of MD simulation
data. The probability F̄T ,largest(t; 1 → n) that the largest of all
N clusters has not yet reached size n at time t is

F̄T ,largest(t; 1 → n) = (F̄T(t; 1 → n))N . (10)

Eq. (10) is the complementary cumulative distribution function
for the first-passage time of the largest cluster, and its time
derivative yields the negative of fT ,largest(t; 1 → n), the FPTD
for the largest cluster17,20

fT ,largest(t; 1 → n) = N fT(t; 1 → n)(F̄T(t; 1 → n))N−1. (11)

The MFPT for the largest cluster, τlargest(1 → n), is the mean
of this distribution and takes on the following form after
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integration by parts:17

τlargest(1 → n) =
∞

0

t fT ,largest(t; 1 → n)dt

=

∞
0

[F̄T(t; 1 → n)]Ndt . (12)

For the case of a single cluster (N = 1), the MFPT has a
simple, closed form expression24,25

τ(1 → n) =
n−1
k=1

eβ∆G(k)

f (k)
k
j=1

e−β∆G( j). (13)

No such simplification has been reported for N , 1;
however, the integral in Eq. (12) can be evaluated
numerically, using standard quadrature techniques. Thus,
following Gillespie’s formulation, we have a rigorous, yet
computationally expensive, procedure to obtain the first-
passage time curve τlargest(1 → n) for a system that obeys the
assumptions (i-iii). To be clear, the procedure is as follows:

1. Given values for the parameters f1, β∆G∗, and n∗,
calculate the monomer attachment and detachment rates
from Eqs. (3)–(5).

2. For each size n, find the n − 1 eigenvalues −P(n), defined
in Eq. (7).

3. For each size n, compute the τlargest(1 → n) using Eqs. (12)
and (9).

In principle, given the mean first-passage time data for
a nucleation process from molecular simulation, one can
estimate f1, β∆G∗, and n∗ through this procedure by adjusting
their values until Eq. (12) provides a suitable fit to the data. In
practice, the cost associated with the eigenvalue computation
and the numerical instability of the resulting FPTD25 make
this a very difficult task. In Section III, we present a method
based on cumulants to compute an approximation to the
FPTD that avoids matrix diagonalization, so that the analysis
of nucleation according to Gillespie’s model, from mean
first-passage time data of a molecular simulation, is made
significantly more practical.

B. Kinetic rates

The parameters f1, β∆G∗, and n∗ can be used to compute
steady-state kinetic rates for a phase transition, including the
nucleation rate and a characteristic growth rate. The steady-
state nucleation rate is the constant flux solution to Eq. (1) and
has a closed-form solution based on the equilibrium cluster
distribution function Ceq(n) and monomer attachment rate
f (n) (or equivalently a set of ∆G∗, n∗, and f1)29

IS =


M
k=1

1
Ceq(k) f (k)



−1

= C1



M
k=1

e∆G(k)

f (k)


−1

. (14)

The value M should be chosen so that the expected rate of
decay g(M + 1) is negligibly small and has no discernible
effect on the computed rate of nucleation as long as its value
is sufficiently larger than the critical nucleus size. Gillespie17

measured no difference between nucleation rates computed
using M = 2n∗ and M = 4n∗. The concentration of monomers
C1 can be defined under the assumption that the concentration
of clusters is equal to N/V and can be derived from the
steady-state distribution of clusters29

C1 =
N
V



M
k=1 e∆G(k)/ f (k)

M
n=1

e−∆G(n)M
k=n e∆G(k)/ f (k)



=
N
V



M
k=1 e∆G(k)/ f (k)
τ(1 → M + 1)


. (15)

This expression is in apparent contradiction with the
assumption that the concentration of monomers is constant
and initially equal to N/V . This contradiction is an inevitable
consequence of the application of the assumptions listed in
Section II A to steady-state nucleation. However, resolution
of this contradiction can be found in the limit that the number
of clusters with size n > 1 is negligibly small, such that
Eq. (15) approaches N/V . Combining Eqs. (14) and (15)
yields an expression for the nucleation rate, which is similar
to a commonly held expression for the steady-state flux in
barrier crossing problems14,30

IS =
N

Vτ(1 → M + 1) . (16)

With a few additional assumptions, an expression for
growth rate can be derived from the parametric description
of the attachment and detachment processes used in the
nucleation model. The derivation relies on the translation of
the attachment and detachment rates for a growing nucleus
to a situation where the phase transition occurs over an ideal,
flat interface. The full derivation can be found in Appendix A,
but the final result is a familiar expression for the continuous
growth rate31

GS =
f1

ρA1
(1 − exp[−βµ]) . (17)

The value µ is the driving force for the phase change, ρ is
the crystalline number density, and A1 is the shape factor
for a cluster with a surface area that follows A = A1n2/3.
According to the capillary approximation, the driving force is
µ = 2∆G∗/n∗; assuming a spherical cluster, the shape factor
is A1 = (6/ρ)2/3π1/3. Together, these relationships lead to the
following steady-state growth rate:

GS =
f1

(36πρ)1/3 (1 − exp[−2β∆G∗/n∗]) . (18)

Here we have assumed continuous, or liquid-like, growth. The
calculation can be applied readily to vapor-liquid systems,
but not as readily to crystal growth, where the growth rate
changes depending on the crystallographic direction. In this
case, GS should be regarded as a characteristic growth rate
rather than that corresponding to any particular growth plane.
Despite this caveat, we expect that the greatest contribution to
the characteristic growth rate comes from the fastest growth
direction.
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III. APPROXIMATIONS FOR THE FIRST-PASSAGE
TIME DISTRIBUTION

A. The single exponential approximation

A drastic simplification to the first-passage time
distribution can be made in the event that one eigenvalue
of −P(n) is much smaller than all of the remaining ones
λ
(n)
1 ≪ λ

(n)
j≥2.

17,20 In this case the first-passage time for a
single cluster is well approximated by a single exponential
random variable with time constant τ(1 → n). For a system
of size N , this assumption yields a FPTD that is a decaying
exponential with a rate that is larger by a factor of N ,

fT ,largest(t; 1 → n) � Nλ
(n)
1 e−Nλ

(n)
1 t �

Ne−t N/τ(1→ n)

τ(1 → n) . (19)

In this case, the solution to Eq. (12) reduces to a simple
relationship for the system-size dependent first-passage
time17,20

τlargest(1 → n) � τ(1 → n)/N. (20)

If this approximation holds, then the first-passage time curve
should scale exactly with the inverse of system size. In
general, the true FPTD is well-approximated by a single
decaying exponential at long times, but at short times it
has low probability density. When N is large, the small
time region becomes especially important, because the tail
associated with the longest relaxation time is diminished.
This effect is demonstrated in Figure 1, which shows that the
deviation between the approximation in Eq. (19) and the full
expression in Eq. (11) becomes larger as N gets larger.

In order to determine whether the single exponential
approximation holds for a given set of nucleation data, we
consider the implications of Eq. (19) on the standard deviation
in the first-passage time of the largest cluster, σlargest(1 → n).
Shneidman32 demonstrated that σlargest(1 → n) is nearly n-
independent for large post-critical nucleus sizes. Furthermore,
if the single exponential approximation is valid, σlargest(1 → n)
is equal to τlargest(1 → n), and therefore τlargest(1 → n) should
also be nearly independent of n for n ≫ n∗. This implies

FIG. 1. The first-passage time distribution fT (t; 1→ n) at n = 150 for a
system with n∗= 40, β∆G∗= 5, and f1= 1 for various system sizes, N . The
solid lines are for the true distribution from Eq. (11) and the dashed lines are
the approximate relationship from Eq. (19).

that we should expect Eqs. (19) and (20) to be valid only
if the standard deviation in the first-passage time and the
MFPT for the largest cluster are equal, and level off at large
n. In general, this only occurs when the first-passage time
curve for the largest cluster takes on a shape that closely
matches the error function suggested by Wedekind et al.14

The form of the error function implies a large separation in
time scale between nucleation and growth in this class of
problems.

B. The cumulant expansion

Here, we introduce a computationally efficient method
to obtain an approximation to the FPTD in Eq. (8) that
may be used even when conditions necessary for the single
exponential approximation do not hold. Our method makes
use of cumulants of the first-passage time, which can be
computed without diagonalization, in order to estimate the
eigenvalues of −P(n). These estimated eigenvalues, along with
the known structure of the FPTD,26,28 can be used to efficiently
approximate the true FPTD in order to evaluate τlargest(1 → n).

The cumulants of the first-passage time are transforma-
tions of the moments of the first-passage time, which can
be found efficiently using the procedure outlined in Section
6.6B of Gillespie’s text on Markov processes.25 From these
moments, the cumulants κi(1 → n) follow from a recursive
relationship.33 Recalling from Section II A, T(1 → n) is
distributed as a sum of n − 1 independent exponential
random variables, and therefore κi(1 → n) are the sums of
cumulants of the n − 1 exponential random variables. A
single exponential random variable with rate λ has cumulants
κi = λ−i(i − 1)!, and therefore the cumulants for T(1 → n) are

κi(1 → n) = (i − 1)!
n−1
k=1

(λ(n)
k
)−i. (21)

The dominant contribution to the ith cumulant comes from the
smallest rate, allowing us to write the following expression,
which includes an upper bound for the contributions from the
remaining rates:

κi(1 → n)
(i − 1)! =

1

(λ(n)
1 )i
+O *

,

n − 2

(λ(n)
2 )i

+
-
. (22)

In the limit of large i we get a limiting expression for smallest
rate based on the ith cumulant,

lim
i→∞


κi(1 → n)
(i − 1)!

1/i

=
1

λ
(n)
1

. (23)

Even for nucleation processes with small barriers β∆G∗,
the cumulants were observed to converge to this limiting
expression for modest values of i. This behavior is
demonstrated in Figure 2, in which the limiting expressions for
i = 2 and i = 3 are nearly indistinguishable for barrier heights
in the range of 1 ≤ β∆G∗ ≤ 10; convergence improves with
increasing β∆G∗.

The convergence shows that we can get a good estimate
of the smallest rate λ̂

(n)
1 ≈ λ

(n)
1 from κi(1 → n) using Eq. (23)

with a modest value of i. We can extend this approach
by assuming that the dominant contributions to κi−1(1 → n)
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FIG. 2. Convergence of cumulants to the limiting expression for n∗= 40,
f1= 1 with varying barrier heights. The variable i denotes the order of the
cumulant used in the limiting expression.

are from λ
(n)
1 and λ

(n)
2 , to get an estimate of the second

smallest rate λ̂
(n)
2 ≈ λ

(n)
2 , and so on. In general, one may

compute the estimated values of i rates, under the assumption
that κi−k(1 → n) is well approximated by {λ(n)

1 , . . . , λ
(n)
k+1} in

Eq. (21). This reduces to the following recursive relation to
compute the estimated rates {λ̂(n)

1 , . . . , λ̂
(n)
i }:

λ̂
(n)
k
=



κi−k+1(1 → n)
(i − k)! −

k−1
j=1

(λ̂(n)
j )k−i−1



1
k−i−1

,

k = 1,2, . . . , i. (24)

For example, if we choose i = 2, the estimated rates are:
λ̂
(n)
1 = κ2(1 → n)−1/2 and λ̂

(n)
2 = [κ1(1 → n) − κ2(1 → n)]−1/2.

In Figure 3(a) we compare the λ̂
(n)
k

values from Eq. (24)
with i = 4 to the true 4 smallest rates, obtained from the
diagonalization of −P(n), for β∆G∗ = 5, n∗ = 40, and f1 = 1.
The first 3 estimates were found to be good approximations
to the true rates, which are represented by the dotted lines.
The largest of the 4 rate estimates, however, was found to be
consistently smaller than the true rate. In general, Eq. (24)
was found to give accurate estimations for the first i − 1
rates, but not for the ith. Recalling that fT(t; 1 → n) is
the distribution for a sum of n − 1 independent exponential
random variables, we can determine the origin for this
discrepancy by considering the separate contributions to the
full FPTD from the first i − 1 rates and the remaining n − i
rates. Each of these contributions follows the hypoexponential
distribution, given by Eq. (8), and is drawn in Figure 3(b) for
the transition 1 → 150. We see that, relative to the full FPTD,
the contribution from the n − i = 146 largest rates is a sharply
peaked curve, and the contribution from the i − 1 = 3 rates
looks similar to the full FPTD, but shifted. This behavior is

FIG. 3. For a system with β∆G∗= 5, n∗= 40, and f1= 1: (a) the approximate
eigenvalues computed using Eq. (24) with i = 4 (solid lines) and the smallest
four eigenvalues of −P(n) (dashed lines), (b) the FPTD for T (1→ 150) using
all 149 rates as well as the individual contributions based on the 3 smallest
rates and the 149−3= 146 largest rates.

consistent with the n − i = 146 rates acting as a shift with
mean

µpeak � κ1(1 → n) −
i−1
k=1

(
λ̂
(n)
k

)−1
=

(
λ̂
(n)
i

)−1
. (25)

Consequentially, λ̂(n)
i reflects the inverse of the shift caused

by the n − i largest rates, rather than an approximation for the
ith smallest rate.

Based on this observation we propose that the FPTD
is well-approximated by the following hypoexponential
distribution, in which s = t − 1/λ̂(n)

i ≥ 0 is a shifted
time:

fT(s; 1 → n) =
i−1
k=1

*.
,
λ̂
(n)
k

e−λ
(n)
k

s
i−1

j=1, j,k

λ̂
(n)
j

λ̂
(n)
j − λ̂

(n)
k

+/
-
,

i > 1. (26)

We designate that this expression is for i > 1 since it would
not make sense to use a shift if there is only one approximate
rate. For i = 1, we use the exponential distribution with rate
λ̂
(n)
1 = κ(1 → n)−1 = τ(1 → n)−1, which is equivalent to the

approximation discussed in Section III A. In Figure 4, we
show the FPTD based on Eq. (26) for the same system used
to produce Figure 3. As i is increased from 1 to 4, the
approximation improves dramatically.

Using this approximate form for the FPTD in the
expression for the MFPT of the largest cluster, given in
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FIG. 4. The first-passage time distribution for a system with β∆G∗= 5,
n∗= 40, and f1= 1. Approximations are plotted with solid lines and symbols,
and the value of i denotes the number of approximate rates that were used to
compute the FPTD according to Eq. (26). The i = 1 case corresponds to the
single exponential approximation discussed in Section III A. The dashed line
is the exact expression according to Eq. (8).

Eq. (12), yields

τlargest(1 → n) = (
λ̂
(n)
i

)−1

+

∞
0



i−1
k=1

*.
,
e−λ

(n)
k

s
i−1

j=1, j,k

λ̂
(n)
j

λ̂
(n)
j − λ̂

(n)
k

+/
-



N

ds.

(27)

In general, the integral in Eq. (27) must be carried out
numerically. However, for the i = 2 approximation this integral
can be found analytically, making the procedure for computing
the τlargest(1 → n) curve significantly simpler. The full details
of this procedure are shown in Appendix B. In general, the
calculation of τlargest(1 → n) becomes increasingly accurate as
i increases, although the specific number of terms required
depends on the values of the parameters ∆G∗, n∗, and f1, and
the system size N . Despite the fact that i is adjustable, it is
always possible to start with a fit using a small value of i,
and subsequently increase i, performing fits until convergence
upon a set of values for ∆G∗, n∗, and f1 is achieved.

IV. CASE STUDY: N-EICOSANE NUCLEATION

We have applied the method described here to data ob-
tained by molecular dynamics (MD) simulations for crystal
nucleation of n-eicosane (C20) from the melt. The simulated
system and force field are the same as those used by Yi and Rut-
ledge.34,35 The system consisted of 336 C20 molecules, with a
united atom (UA) representation in which each UA represents
a CH3 or CH2 group. The force field was initially proposed
by Paul, Yoon, and Smith36 with subsequent modifications by
Waheed et al.,37,38 and includes bond stretching, bond angle
bending, torsion, and non-bonded Lennard-Jones forces. We
used a rRESPA integration scheme39 with a time step of 2 fs
for bonded interactions and 4 fs for intermolecular interactions.
All simulations were carried out using the LAMMPS software
package.40 We observed 60 independent nucleation events by
first equilibrating the melt at 310 K and 1 atm, which is above

the melting point, and then quenching 60 independent configu-
rations, taken from this trajectory at intervals of 6 ns, to 260 K
(17% supercooling).

To identify crystalline clusters, we first invoked the local
nematic order parameter, as defined by Yi and Rutledge,34 as
a criteria for identifying crystalline UAs

⟨P2⟩i,local =
1
2
(3cos2θi j − 1) j ∈Γi,

Γi = {k : |rk − ri | < rP2, k , i} .
(28)

In this expression θi j is the angle between chord vectors
located on atoms i and j, and the average for the ith UA is
taken over all atoms within a distance rP2. UAs that exceeded
a threshold value P2,th for the local order parameter were
eligible to form clusters of size greater than one. Eligible
UAs were determined to be part the same cluster if they were
within a threshold distance rth of another eligible UA. All
clusters of size one were considered to be in the monomer
state regardless of whether they exceeded the threshold value
of P2,th. In keeping with Yi and Rutledge,34 we used the values
P2,th = 0.4, rP2 = 2.5σ, and rth = 1.3σ, where σ = 4.01 Å is
the van der Waals radius of a CH3 united atom.

For each run, we monitored the size of the largest cluster
in the system and computed the first-passage time curves
Tlargest,sim(1 → n) based on the earliest time that a cluster of
size ≥ n was observed. The MFPT curve τlargest,sim(1 → n)was
found by averaging the first-passage times at each value of n
for all 60 runs. We also computed the standard deviation in the
first-passage time σlargest,sim(1 → n) in a similar manner and
plotted both quantities as solid and dashed lines in Figure 5.
We find that there is a significant discrepancy between the
mean and standard deviation obtained by MD, which indicates
that the FPTD for the largest cluster in this system is not
well described by a single exponential, as was discussed in
Section III A.

We performed a least-squares fit of the simulated MFPT
curve τlargest,sim(1 → n) to τlargest(1 → n) from Eq. (27), which
is the expression from the stochastic nucleation model

FIG. 5. The mean (solid lines) and standard deviation (dashed lines) in the
first-passage time computed using MD for n-eicosane nucleation at 260 K
and 1 atm, and the fitting results to Eq. (27) using i = 1 and i = 4 terms. The
fits using i = 2 and i = 3 terms are nearly identical to the i = 4 case but have
been omitted for clarity. We have also plotted the standard deviation in the
first-passage time of the largest cluster for the i = 4 fit. In the i = 1 case, the
standard deviation is equal to the mean first-passage time.
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TABLE I. Computed kinetic parameters and rates for n-eicosane nucleation
at 260 K and 1 atm. Errors in fitting parameters are given in parentheses.

ia β∆G∗ n∗ f1 (ns−1) IS (1030 m−3 s−1) GS (cm s−1)

1 4.05(0.07) 152.8(1.38) 0.029(0.001) 181 0.009 05
2 12.60(0.03) 142.7(0.73) 25.01(0.42) 367 24.5
3 12.59(0.03) 142.9(0.76) 24.48(0.45) 362 23.9
4 12.59(0.01) 142.9(0.03) 24.49(0.004) 362 23.9

a i is the number of rates used to approximate the FPTD.

using the approximate FPTD. For this system, the number
of monomers from which clusters can form is the total
number of UAs, and therefore the value N = 6720 was
used in Eq. (27). The fitting parameters were β∆G∗, n∗,
and f1, and we used a number of terms ranging from i = 1
(the single exponential approximation) to i = 4. Additionally
we computed the nucleation rate from Eq. (16) and the
characteristic growth rate, under the assumption of a spherical
nucleus, from Eq. (18) using the parameters obtained at
each value of i. The value M = 800 was used for both rate
calculations. The results are displayed in Table I, and the
fits for i = 1 and i = 4 are shown in Figure 5. For the rate
calculations, a density of 0.83 g cm−3 was used for the melt,
and 0.936 g cm−3 for the crystal; these values were obtained
from linear interpolations of the data from Yi and Rutledge.34

For i ranging from 2 to 4, we observed a good quality of fit
to the MFPT, with little variation in the parameters. For i = 1,
however, the best-fit parameterization was not consistent with
the others, and the quality of fit was not that good. This result
corroborates our earlier conclusion that the single exponential
approximation is not sufficient to describe nucleation in this
system. We find that in this case, the i = 2 approximation of
the FPTD is sufficient, with slight improvement shown upon
increasing the number of terms to 3 or 4. Additionally, we find
that the standard deviation computed from the FPTD used to
fit the MFPT corresponds well to the standard deviation in the
first-passage time observed in simulations for i values greater
than 1. This implies that the higher moments of the FPTD
are well described by the fit, despite the fact that they did not
explicitly enter into the objective function.

The non-exponential nature of the FPTD for the largest
cluster is further illustrated in Figure 6, which shows

FIG. 6. The histogram of first-passage times to the critical nucleus size of
n= 800 from 60 nucleation runs is plotted alongside the approximate FPTD
for the largest cluster resulting from the i = 1 and i = 4 fits given in Table I.

a histogram of first-passage times for the largest cluster
from MD for the transition n = 1 → 800, along with the
approximate fT ,largest(t; 1 → n) curves resulting from the
parameterizations in Table I for i = 1 and i = 4. The MD data
show clear non-exponential behavior and therefore deviate
strongly from the i = 1 parameterization. The deviation is
greatest at short time, where the divergence between the
single exponential distribution and the FPTD is expected to
be large, as is shown in Figure 1. On the other hand, the
agreement between the i = 4 parameterization and the MD
data is very good, especially considering the fact that the i = 4
curve was the result of a three-parameter fit to the MFPT
curve from MD, and included no higher moments of the
first-passage time.

From Figure 6 we may obtain an estimate of the time
lag τ′, which is defined as the time elapsed before an initially
quenched system reaches a steady-state nucleation rate.1 Once
the steady-state rate is reached, nucleation events are expected
to occur with exponentially distributed waiting times,34 where
the time constant is 1/ISV . From Figure 6, it is apparent that
after waiting a period of roughly τ′ ≈ 20 ns, corresponding
to the peak in the FPTD, any subsequent nucleation events
would be roughly exponentially distributed. This means that
20 ns is a reasonable estimate of the time lag. The value of
the time constant 1/ISV = 14.6 ns, computed using the i = 4
approximation, is the same order of magnitude as the time lag,
implying that transient nucleation is important for a system of
this size. As the system size becomes larger, 1/ISV decreases
and the role of transient nucleation becomes more important.

The critical nucleus size of ∼140 UAs at 260 K obtained
by our fitting procedure was found to agree well with the
value reported at 265 K by Yi and Rutledge using umbrella
sampling Monte Carlo simulation.34 The free-energy barrier
of 12.59 ± 0.01 kT , on the other hand, is higher than the
9.5 ± 1 kT obtained previously. Using the relationship
from classical nucleation theory, β∆Gν/2 = β∆G∗/n∗, we
estimated from nucleation parameters the experimentally
measureable quantity ∆Gν, the free energy difference per UA
between melt and crystal at the crystallization temperature T .
Using a relationship for the driving force for crystallization
at deep supercooling35,41 and the measured heat of fusion
for C20 ∆H f ,C20 = 46.17 kJ/mol at the melting temperature
Tm = 309.2 K,42 we obtain

β∆Gν

2
=
∆H f ,C20(Tm − T)

2mTm
2R

= 0.0714 (29)

at T = 260 K, where m = 20 is the number of CH2 or CH3
groups per chain. The value obtained for β∆G∗/n∗ from our
fitting procedure is 0.088, which deviates from this estimate
by 23%. Under the conditions studied by Yi and Rutledge,34

Eq. (29) gives a value of 0.0642, while their umbrella
sampling Monte Carlo method yielded β∆G∗/n∗ = 0.036,
a discrepancy of 44%. Although classical nucleation theory
and the extrapolation using Eq. (29) are not without their own
uncertainties, this analysis suggests that the results of our MD
study and analysis method are at least as reasonable as those
reported previously, based on umbrella sampling Monte Carlo
results, with regard to agreement with this experimentally
measurable quantity.
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The nucleation rate of 362 × 1030 m−3 s−1 at 260 K is
higher than the value of 65.9 × 1030 m−3 s−1 at 250 K observed
in the study by Yi and Rutledge.34 This discrepancy cannot
be due to the difference in temperature alone. We have traced
this deviation in part to the overly large time step of 5 fs used
in that work; such a large time step was reported by Waheed
et al.37 to increase the chain relaxation time by only 10%,
but its effect in suppressing nucleation is apparently more
dramatic, compared to the more accurate rRESPA scheme
used in this work. Our estimate for nucleation rate is also
higher than the rate of 105 × 1030 m−3 s−1 reported by Anwar
et al. at 250 K.43 In this case, we suspect that the discrepancy is
due to the application of the MFPT analysis method proposed
by Wedekind et al.14 which employs the single-exponential
approximation; as shown for our system in Table I, the single-
exponential approximation results in an underestimation of the
true nucleation rate. From the analysis herein, we conclude
that the single exponential approximation should not hold
for their conditions, given that their system is larger and the
supercooling is deeper, both of which are expected to give
rise to a greater degree of non-exponential behavior in the
FPTD. The characteristic growth rate of 23.9 cm s−1 cannot
be directly compared to more detailed studies of growth rates
since it is an average of growth in all crystalline directions.
However, our result is consistent with the study performed by
Waheed and Rutledge for crystal growth of the (110) plane,37

in which rates in the range of 4-28 cm s−1 were reported.

V. CONCLUSIONS

We have presented a new method to analyze nucleation
from mean first-passage time data obtained by molecular dy-
namics simulations. We explicitly invoke a stochastic model
for the nucleation process and, in contrast to prior approaches,
account for the system size in a manner that does not rely
on the assumption that the FPTD is exponential. Although it
has been widely used in the literature, this assumption is not
always justified for a given set of simulation conditions. In
order for this assumption to hold, the standard deviation in
the first-passage time should be approximately equal to the
MFPT. This constitutes a simple test that can be applied to first-
passage time data in order to determine an appropriate method
for further analysis. Our method is of greatest utility where the
described test fails, which in turn can be traced to cases where
the free energy barrier is small and/or the system size is large.

The rigorous solution for the system size dependence
of the MFPT for the stochastic model proved to be of little
practical utility due to the large cost associated with eigenvalue
computations. This led us to develop a diagonalization-free
approximate method based on the cumulant expansion of
the FPTD for a birth-death process. Using this method,
τlargest(1 → n) can be determined efficiently, with little devia-
tion from the rigorous solution. Although the approximation
was developed with nucleation in mind, it could be used
to evaluate the FPTD for other birth-death processes, in
particular, those that include a diffusive barrier-crossing event.

By fitting τlargest(1 → n) curves from simulation to the
model expression, we estimate the critical barrier height, crit-
ical nucleus size, and attachment pre-factor for a given set of

nucleation conditions. These quantities can be further used to
estimate the nucleation rate and a characteristic growth rate.
We demonstrate this process for the nucleation of C20 crystals
from the quiescent melt at 260 K, a system for which the single-
exponential approximation fails. The critical barrier height
does not agree particularly well with previous simulations;
however, the critical nucleus size was similar, and the ratio of
the critical barrier height to nucleus size proved to be more
consistent with the experimental heat of fusion for n-eicosane
than previous results. The characteristic growth rate under the
assumption of a spherical nucleus showed good agreement
with the previously calculated fastest growth rate in C20.
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APPENDIX A: DERIVATION OF THE STEADY-STATE
GROWTH RATE

The growth rate is derived by translating the attachment
and detachment rates for a cluster to an ideal system where
the phase change occurs normal to a flat surface that separates
the old phase from the new phase. In this case, the volume of
the new phase can be written in terms of the cross-sectional
area of the dividing surface Ac and its width l, V = Acl = n/ρ
where ρ is the number density of the new phase. The growth
rate GS is the time derivative of the width

GS =
dl
dt
=

1
ρAc

dn
dt
=

1
ρAc


dt
dn

−1

. (A1)

In the discrete limit, the quantity dt/dn is the average
time it takes to add a single monomer across a flat interface.
This quantity can be expressed as τg(n → n + 1), the mean
first-passage time from cluster size n to n + 1 for the idealized
growth process. With this substitution, our expression for the
growth rate is

GS �
1

ρAc

�
τg(n → n + 1)�−1

. (A2)

Since τg(n → n + 1) is based on attachment and detachment
processes for a flat surface, it is different from the MFPT
for cluster formation. For a cluster, the monomer attachment
rate scales with the surface area of the cluster. Assuming
that the cluster shape is constant, the surface area is related
to the cluster size by some factor A1 where A(n) = A1n2/3.
Therefore, the rate of addition to a cluster per unit area is
f (n)/A(n), and the attachment rate for a flat surface of size
Ac is

fg(n) = f1Ac

A1
. (A3)

Since the surface area is constant, there is no variable
interfacial dependence to the free energy. The interfacial
energy term in the capillary approximation may be eliminated,
leaving only the bulk driving force µ

β∆Gg(n) = −βµn. (A4)



134105-10 D. A. Nicholson and G. C. Rutledge J. Chem. Phys. 144, 134105 (2016)

Based on the free energy and attachment rate for growth,
τg(n → n + 1) follows from the standard expression for a
birth-death process in Eq. (13)

τg(n → n + 1) = τg(1 → n + 1) − τg(1 → n)

=
e∆Gg (n)

fg(n)
n

k=1

e−∆Gg (n). (A5)

This mean first-passage time contains a reflecting boundary
condition at n = 1; however, we are actually interested in
the limiting growth rate that is achieved infinitely far away
from this boundary. Taking the limit as n → ∞, we find that
τg(n → n + 1) can be expressed as a convergent sum that does
not depend on n

τg(n → n + 1) = A1

f1Ac

∞
k=0

e∆Gg (k)

=
A1

f1Ac

(
1

1 − exp[−βµ]
)
. (A6)

Combining Eqs. (A6) and (A2) yields the growth rate given
in Eq. (17)

GS =
f1

ρA1
(1 − exp[−βµ]) . (A7)

APPENDIX B: MFPT OF THE LARGEST CLUSTER
USING THE i = 2 APPROXIMATION FOR THE FPTD

A two term approximation to the FPTD yields a significant
improvement over the single exponential approximation
without adding a great deal of complexity to the computation
of the MFPT of the largest cluster. Following the procedure
in Section III B, we first compute the first two cumulants of
T(1 → n). The first cumulant is κ1(1 → n) = τ(1 → n) and is
given in Eq. (13). The second cumulant is the variance and
can be computed using the iterative method from moment
calculations outlined by Gillespie,25 or alternatively using the
following form from Jouini and Dallery:44

κ2(1 → n) =
n
l=2

*..
,

2eβ∆G(l−1)

f (l − 1)
l−1
m=2

eβ∆G(m−1)

f (m − 1)
*.
,

m−1
p=1

e−β∆G(p)+/
-

2

+
e2β∆G(l−1)

f (l − 1)2
*.
,

l−1
p=1

e−β∆G(p)+/
-

2
+//
-
. (B1)

From these two cumulants, the estimates of the two smallest
rates in the FPTD follow from Eq. (24)

λ̂
(n)
1 = κ2(1 → n)−1/2,

λ̂
(n)
2 =

�
κ1(1 → n) − κ2(1 → n)−1/2�−1

. (B2)

The second rate λ̂
(n)
2 represents a shift, leaving the FPTD with

the form of a shifted exponential distribution (s = t − 1/λ̂(n)
2 )

fT(s; 1 → n) = λ̂
(n)
1 e−λ

(n)
1 s. (B3)

Since the shift is not affected by the size of the system N ,
the FPTD for the largest cluster is also a shifted exponential

distribution

fT ,largest(s; 1 → n) = N λ̂
(n)
1 e−Nλ

(n)
1 s. (B4)

This form allows the MFPT of the largest cluster to be
calculated without numerical integration of Eq. (27) as

τlargest(1 → n) = 1/λ(n)
2 + 1/(Nλ

(n)
1 ). (B5)

Better accuracy can be obtained by using a FPTD
approximation with i > 2. However, for some nucleation
conditions, including the n-eicosane case study discussed
in Section IV, there is only a slight improvement in the
convergence of the estimated parameters upon using the higher
order approximation.
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