38 research outputs found

    Non-consensus GLI binding sites in Hedgehog target gene regulation

    Get PDF
    BACKGROUND: The GLI transcription factors, mediators of the hedgehog signal bind with high affinity to the consensus sequence GACCACCCA. The affinity of variant single substitutions in GLI binding sites has been measured systematically, but the affinities of the variant binding sites appears low compared to the frequency of occurrence of variant sites in known GLI target gene promoters. RESULTS: We quantified transcriptional activation by GLI using PTCH1 promoter based luciferase reporters containing all single substitutions of the GLI consensus binding site. As expected variants with very low affinity did not activate the reporter. Many lower affinity binding sequences are, however, functional in the presence of moderate GLI concentration. Using two natural non-consensus GLI site promoters we showed that substitution of the variant sequences by consensus leads to comparable activity. CONCLUSIONS: Variant GLI binding sites with relatively low affinity can within natural promoters lead to strong transcriptional activation. This may facilitate the identification of additional direct GLI target genes.(VLID)218887

    Hypertrophic cardiomyopathy is characterized by alterations of the mitochondrial calcium uniporter complex proteins: insights from patients with aortic valve stenosis versus hypertrophic obstructive cardiomyopathy

    Get PDF
    Introduction: Hypertrophies of the cardiac septum are caused either by aortic valve stenosis (AVS) or by congenital hypertrophic obstructive cardiomyopathy (HOCM). As they induce cardiac remodeling, these cardiac pathologies may promote an arrhythmogenic substrate with associated malignant ventricular arrhythmias and may lead to heart failure. While altered calcium (Ca2+) handling seems to be a key player in the pathogenesis, the role of mitochondrial calcium handling was not investigated in these patients to date.Methods: To investigate this issue, cardiac septal samples were collected from patients undergoing myectomy during cardiac surgery for excessive septal hypertrophy and/or aortic valve replacement, caused by AVS and HOCM. Septal specimens were matched with cardiac tissue obtained from post-mortem controls without cardiac diseases (Ctrl).Results and discussion: Patient characteristics and most of the echocardiographic parameters did not differ between AVS and HOCM. Most notably, the interventricular septum thickness, diastolic (IVSd), was the greatest in HOCM patients. Histological and molecular analyses showed a trend towards higher fibrotic burden in both pathologies, when compared to Ctrl. Most notably, the mitochondrial Ca2+ uniporter (MCU) complex associated proteins were altered in both pathologies of left ventricular hypertrophy (LVH). On the one hand, the expression pattern of the MCU complex subunits MCU and MICU1 were shown to be markedly increased, especially in AVS. On the other hand, PRMT-1, UCP-2, and UCP-3 declined with hypertrophy. These conditions were associated with an increase in the expression patterns of the Ca2+ uptaking ion channel SERCA2a in AVS (p = 0.0013), though not in HOCM, compared to healthy tissue. Our data obtained from human specimen from AVS or HOCM indicates major alterations in the expression of the mitochondrial calcium uniporter complex and associated proteins. Thus, in cardiac septal hypertrophies, besides modifications of cytosolic calcium handling, impaired mitochondrial uptake might be a key player in disease progression

    Is the human sclera a tendon-like tissue? A structural and functional comparison

    No full text
    Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology. (c) 2021 Elsevier GmbH. All rights reserved

    Scleraxis expressing scleral cells respond to inflammatory stimulation

    No full text
    The sclera is an ocular tissue rich of collagenous extracellular matrix, which is built up and maintained by relatively few, still poorly characterized fibroblast-like cells. The aims of this study are to add to the characterization of scleral fibroblasts and to examine the reaction of these fibroblasts to inflammatory stimulation in an ex vivo organotypic model. Scleras of scleraxis-GFP (SCX-GFP) mice were analyzed using immunohistochemistry and qRT-PCR for the expression of the tendon cell associated marker genes scleraxis (SCX), mohawk and tenomodulin. In organotypic tissue culture, explanted scleras of adult scleraxis GFP reporter mice were exposed to 10 ng/ml recombinant interleukin 1-ss (IL1-ss) and IL1-ss in combination with dexamethasone. The tissue was then analyzed by immunofluorescence staining of the inflammation- and fibrosis-associated proteins IL6, COX-2, iNOS, connective tissue growth factor, MMP2, MMP3, and MMP13 as well as for collagen fibre degradation using a Collagen Hybridizing Peptide (CHP) binding assay. The mouse sclera displayed a strong expression of scleraxis promoter-driven GFP, indicating a tendon cell-like phenotype, as well as expression of scleraxis, tenomodulin and mohawk mRNA. Upon IL1-ss stimulation, SCX-GFP+ cells significantly upregulated the expression of all proteins analysed. Moreover, IL1-ss stimulation resulted in significant collagen degradation. Adding the corticosteroid dexamethasone significantly reduced the response to IL1-ss stimulation. Collagen degradation was significantly enhanced in the IL1-ss group. Dexamethasone demonstrated a significant rescue effect. This work provides insights into the characteristics of scleral cells and establishes an ex vivo model of scleral inflammation

    The lymphangiogenic and hemangiogenic privilege of the human sclera

    No full text
    Purpose: Most organs of the human body are supplied with a dense network of blood and lymphatic vessels. However, some tissues are either hypovascular or completely devoid of vessels for proper function, such as the ocular tissues sclera and cornea, cartilage and tendons. Since many pathological conditions are affecting the human sclera, this review is focussing on the lymphangiogenic and hemangiogenic privilege in the human sclera. Methods: This article gives an overview of the current literature based on a PubMed search as well as observations and experience from clinical practice. Results: The healthy human sclera is the outer covering layer of the eye globe consisting mainly of collagenous extracellular matrix and fibroblasts. Physiologically, the sclera shows only a superficial network of blood vessels and a lack of lymphatic vessels. This vascular privilege is actively regulated by balancing anti- and proangiogenic factors expressed by cells within the sclera. In pathological situations, such as open globe injuries or ciliary body melanomas with extraocular extension, lymphatic vessels can secondarily invade the sclera and the inner eye. This mechanism most likely is important for tumor cell metastasis, wound healing, immunologic defense against intruding microorganism, and autoimmune reactions against intraocular antigens. Conclusions: The human sclera is characterized by a tightly regulated vascular network that can be compromised in pathological situations, such as injuries or intraocular tumors affecting healing outcomes Therefore, the molecular and cellular mechanisms underlying wound healing following surgical interventions deserve further attention, in order to devise more effective therapeutic strategies. (C) 2020 Elsevier GmbH. All rights reserved

    Hedgehog/GLI Signaling Activates Suppressor of Cytokine Signaling 1 (<i>SOCS1</i>) in Epidermal and Neural Tumor Cells

    Get PDF
    <div><p>Sustained hedgehog (Hh) signaling mediated by the GLI transcription factors is implicated in many types of cancer. Identification of Hh/GLI target genes modulating the activity of other pathways involved in tumor development promise to open new ways for better understanding of tumor development and maintenance. Here we show that SOCS1 is a direct target of Hh/GLI signaling in human keratinocytes and medulloblastoma cells. SOCS1 is a potent inhibitor of interferon gamma (IFN-y)/STAT1 signaling. IFN-у/STAT1 signaling can induce cell cycle arrest, apoptosis and anti-tumor immunity. The transcription factors GLI1 and GLI2 activate the SOCS1 promoter, which contains five putative GLI binding sites, and GLI2 binding to the promoter was shown by chromatin immunoprecipitation. Consistent with a role of GLI in SOCS1 regulation, STAT1 phosphorylation is reduced in cells with active Hh/GLI signaling and IFN-у/STAT1 target gene activation is decreased. Furthermore, IFN-у signaling is restored by shRNA mediated knock down of SOCS1. Here, we identify SOCS1 as a novel Hh/GLI target gene, indicating a negative role of Hh/GLI pathway in IFN-y/STAT1 signaling.</p> </div

    Choroidal melanocytes: subpopulations of different origin?

    No full text
    Background: The human choroid derives from the mesectoderm, except the melanocytes originating from the neuroectoderm. To date, it is unclear whether all choroidal melanocytes share the same origin or might have different origins. The purpose of this study was to screen immunohistochemically for mesenchymal elements in the adult healthy human choroid, in the malignant melanoma of the choroid, as well as in the developing human fetal choroid. Methods: Human choroids were obtained from cornea donors and prepared as flat whole mounts for paraffin-and cryoembedding. Globes enucleated for choroidal melanoma and eyes from human fetuses between 11 and 20 weeks of gestation were also embedded in paraffin. Sections were processed for immunohistochemistry of the mesenchymal marker vimentin, the melanocyte marker Melan-A, and the macrophage marker CD68, followed by light-, fluorescence-, and confocal laser scanning-microscopy. Results: The normal choroid contained 499 +/- 139 vimentin, 384 +/- 78 Melan-A, and 129 +/- 57 CD68 immunoreactive cells/mm(2). The vimentin immunopositive cell density was significantly higher than the density of Melan-A and CD68 immunopositive cells (p < 0.001, respectively). By confocal microscopy, 24 +/- 8% of all choroidal melanocytes displayed vimentin immunoreactivity. In choroidal melanomas, numerous melanoma cells of the epithelioid and spindle cell type revealed immunopositivity for both vimentin and Melan-A. The intratumoral density of vimentin immunoreactive cells was 1758 +/- 106 cells/mm(2), significantly higher than the density of Melan-A and CD68 immunopositive cells (p < 0.001, respectively). Comparing to healthy choroidal tissue, the choroidal melanomas revealed significantly higher densities of vimentin, Melan-A, and CD68 immunoreactive cells (p < 0.001, respectively). In the developing human fetal choroid, numerous vimentin and Melan-A immunopositive cells were detected not before the 16th week of gestation, with some of them showing colocalization of vimentin and Melan-A. Conclusions: The adult healthy human choroid is endowed with a significant number of vimentin immunopositive mesenchymal structures, including a subpopulation of vimentin immunoreactive choroidal melanocytes. These vimentin immunopositive melanocytic cells are also present in choroidal melanomas as well as in the developing human fetal choroid. Therefore, different embryologic origins can be considered for choroidal melanocytes. (C) 2021 Elsevier GmbH. All rights reserved

    SOCS1 knock down restores IFN-у/STAT1 signaling in cells with activated Hh signaling.

    No full text
    <p><b>A</b>) Western blot analysis of SOCS1, GLI2, and ACTB in GLI2act-HaCaT cells transduced with two shRNAs directed against human SOCS1 (shSOCS1_1, shSOCS1_2) and control shRNA (shCTRL) expressing GLI2 for the time indicated (left panel). SOCS1 mRNA levels were also analyzed by qRT-PCR in cells expressing GLI2 for 48h. <b>B</b>) qRT-PCR of IFN-у target genes (CXCL10, CDKN1A, and ICAM1) measured in GLI2act-HaCaT cells after expressing GLI2 for 48h (+ DOX) with subsequent exposure to 1ng/ml recombinant IFN-у for 6h. <b>C</b>) qRT-PCR of IFN-у target gene activation (HLA-DRA, ICAM1, IFIT1, TRIM22 and IRF1) in DAOY cell lines stably expressing either shSOCS1_1 and shSOCS1_2 or unspecific control shRNA (shCTRL). Cells were pretreated with 200 nM SAG for 120h to activate the Hh pathway and subsequently incubated with 1ng/ml recombinant IFN-у for 6h. mRNA levels are shown as ratio of IFN-у treated to untreated samples. Data are given as mean ± SD of biological triplicates.</p

    Absence of lymphatic vessels in non-functioning bleb capsules of glaucoma drainage devices

    No full text
    Purpose. To evaluate the presence and appearance of blood and lymphatic vessels in nonfunctioning bleb capsules of glaucoma drainage devices (GDD). Materials and methods. Non-functioning (n=14) GDD-bleb capsules of 12 patients were analyzed by immunohistochemistry for blood vessels (CD31, vascular endothelium), lymphatic vessels (lymphatic vessel endothelial hyaluronan receptor-1 [LYVE-1] and podoplanin) and macrophages (CD68). Results. CD31+++ blood vessels and CD68+ macrophages were detected in the outer layer of all specimens. LYVE-1 immunoreactivity was registered in single non-endothelial cells in 8 out of 14 (57%) bleb capsule specimens. Podoplanin-immunoreactivity was detected in all cases, located in cells and profiles of the collagen tissue network of the outer and/or the inner capsule layer. However, a colocalization of LYVE-1 and podoplanin as evidence for lymphatic vessels was not detected. Conclusions. We demonstrate the presence of bloodvessels but absence of lymphatic vessels in nonfunctioning bleb capsules after GDD-implantation. While the absence of lymphatic vessels might indicate a possible reason for drainage device failure, this needs to be confirmed in upcoming studies, including animal experiments
    corecore