737 research outputs found
The Diversity of Type Ia Supernovae from Broken Symmetries
Type Ia supernovae result when carbon-oxygen white dwarfs in binary systems
accrete mass from companion stars, reach a critical mass, and explode. The near
uniformity of their light curves makes these supernovae good standard candles
for measuring cosmic expansion, but a correction must be applied to account for
the fact that the brighter supernovae have broader light curves.
One-dimensional modelling, with a certain choice of parameters, can reproduce
this general trend in the width-luminosity relation, but the processes of
ignition and detonation have recently been shown to be intrinsically
asymmetric. Here we report on multi-dimensional modelling of the explosion
physics and radiative transfer that reveals that the breaking of spherical
symmetry is a critical factor in determining both the width luminosity relation
and the observed scatter about it. The deviation from sphericity can also
explain the finite polarization detected in the light from some supernovae. The
slope and normalization of the width-luminosity relation has a weak dependence
on certain properties of the white dwarf progenitor, in particular the trace
abundances of elements other than carbon and oxygen. Failing to correct for
this effect could lead to systematic overestimates of up to 2% in the distance
to remote supernovae.Comment: Accepted to Natur
On the Origin of the Type Ia Supernova Width-Luminosity Relation
Brighter Type Ia supernovae (SNe Ia) have broader, more slowly declining
B-band light curves than dimmer SNe Ia. We study the physical origin of this
width-luminosity relation (WLR) using detailed radiative transfer calculations
of Chandrasekhar mass SN Ia models. We find that the luminosity dependence of
the diffusion time (emphasized in previous studies) is in fact of secondary
relevance in understanding the model WLR. Instead, the essential physics
involves the luminosity dependence of the spectroscopic/color evolution of SNe
Ia. Following maximum-light, the SN colors are increasingly affected by the
development of numerous Fe II/Co II lines which blanket the B-band and, at the
same time, increase the emissivity at longer wavelengths. Because dimmer SNe Ia
are generally cooler, they experience an earlier onset of Fe III to Fe II
recombination in the iron-group rich layers of ejecta, resulting in a more
rapid evolution of the SN colors to the red. The faster B-band decline rate of
dimmer SNe Ia thus reflects their faster ionization evolution.Comment: 6 pages, submitted to Ap
Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers
We present Sedonu, a new open source, steady-state, special relativistic
Monte Carlo (MC) neutrino transport code, available at
bitbucket.org/srichers/sedonu. The code calculates the energy- and
angle-dependent neutrino distribution function on fluid backgrounds of any
number of spatial dimensions, calculates the rates of change of fluid internal
energy and electron fraction, and solves for the equilibrium fluid temperature
and electron fraction. We apply this method to snapshots from two-dimensional
simulations of accretion disks left behind by binary neutron star mergers,
varying the input physics and comparing to the results obtained with a leakage
scheme for the case of a central black hole and a central hypermassive neutron
star. Neutrinos are guided away from the densest regions of the disk and escape
preferentially around 45 degrees from the equatorial plane. Neutrino heating is
strengthened by MC transport a few scale heights above the disk midplane near
the innermost stable circular orbit, potentially leading to a stronger
neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is
stronger when using MC transport, leading to a globally higher cooling rate by
a factor of a few and a larger leptonization rate by an order of magnitude. We
calculate neutrino pair annihilation rates and estimate that an energy of
2.8e46 erg is deposited within 45 degrees of the symmetry axis over 300 ms when
a central BH is present. Similarly, 1.9e48 erg is deposited over 3 s when an
HMNS sits at the center, but neither estimate is likely to be sufficient to
drive a GRB jet.Comment: 23 pages, 16 figures, Accepted to The Astrophysical Journa
Modeling the Diversity of Type Ia Supernova Explosions
Type Ia supernovae (SNe Ia) are a prime tool in observational cosmology. A
relation between their peak luminosities and the shapes of their light curves
allows to infer their intrinsic luminosities and to use them as distance
indicators. This relation has been established empirically. However, a
theoretical understanding is necessary in order to get a handle on the
systematics in SN Ia cosmology. Here, a model reproducing the observed
diversity of normal SNe Ia is presented. The challenge in the numerical
implementation arises from the vast range of scales involved in the physical
mechanism. Simulating the supernova on scales of the exploding white dwarf
requires specific models of the microphysics involved in the thermonuclear
combustion process. Such techniques are discussed and results of simulations
are presented.Comment: 6 pages, ASTRONUM-2009 "Numerical Modeling of Space Plasma Flows",
Chamonix, France, July 2009, to appear in ASP Conf. Pro
Type II Supernovae: Model Light Curves and Standard Candle Relationships
A survey of Type II supernovae explosion models has been carried out to
determine how their light curves and spectra vary with their mass, metallicity,
and explosion energy. The presupernova models are taken from a recent survey of
massive stellar evolution at solar metallicity supplemented by new calculations
at subsolar metallicity. Explosions are simulated by the motion of a piston
near the edge of the iron core and the resulting light curves and spectra are
calculated using full multi-wavelength radiation transport. Formulae are
developed that describe approximately how the model observables (light curve
luminosity and duration) scale with the progenitor mass, explosion energy, and
radioactive nucleosynthesis. Comparison with observational data shows that the
explosion energy of typical supernovae (as measured by kinetic energy at
infinity) varies by nearly an order of magnitude -- from 0.5 to 4.0 x 10^51
ergs, with a typical value of ~0.9 x 10^51 ergs. Despite the large variation,
the models exhibit a tight relationship between luminosity and expansion
velocity, similar to that previously employed empirically to make SNe IIP
standardized candles. This relation is explained by the simple behavior of
hydrogen recombination in the supernova envelope, but we find a sensitivity to
progenitor metallicity and mass that could lead to systematic errors.
Additional correlations between light curve luminosity, duration, and color
might enable the use of SNe IIP to obtain distances accurate to ~20% using only
photometric data.Comment: 12 pages, ApJ in pres
Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout
For the initial mass range (140 < M < 260 Msun) stars die in a thermonuclear
runaway triggered by the pair-production instability. The supernovae they make
can be remarkably energetic (up to ~10^53 ergs) and synthesize considerable
amounts of radioactive isotopes. Here we model the evolution, explosion, and
observational signatures of representative pair-instability supernovae (PI SNe)
spanning a range of initial masses and envelope structures. The predicted light
curves last for hundreds of days and range in luminosity, from very dim to
extremely bright, L ~ 10^44 ergs/s. The most massive events are bright enough
to be seen at high redshift, but the extended light curve duration (~1 year) --
prolonged by cosmological time-dilation -- may make it difficult to detect them
as transients. An alternative approach may be to search for the brief and
luminous outbreak occurring when the explosion shock wave reaches the stellar
surface. Using a multi-wavelength radiation-hydrodynamics code we calculate
that, in the rest-frame, the shock breakout transients of PI SNe reach
luminosities of 10^45-10^46 ergs/s, peak at wavelengths ~30-170 Angstroms, and
last for several hours. We explore the detectability of PI SNe emission at high
redshift, and discuss how observations of the light curves, spectra, and
breakout emission can be used to constrain the mass, radius, and metallicity of
the progenitor.Comment: submitted to Ap
Type Ia Supernova Light Curves
The diversity of Type Ia supernova (SN Ia) photometry is explored using a grid of 130 one-dimensional models. It is shown that the observable properties of SNe Ia resulting from Chandrasekhar-mass explosions are chiefly determined by their final composition and some measure of ``mixing'' in the explosion. A grid of final compositions is explored including essentially all combinations of 56Ni, stable ``iron'', and intermediate mass elements that result in an unbound white dwarf. Light curves (and in some cases spectra) are calculated for each model using two different approaches to the radiation transport problem. Within the resulting templates are models that provide good photometric matches to essentially the entire range of observed SNe Ia. On the whole, the grid of models spans a wide range in B-band peak magnitudes and decline rates, and does not obey a Phillips relation. In particular, models with the same mass of 56Ni show large variations in their light curve decline rates. We identify the physical parameters responsible for this dispersion, and consider physically motivated ``cuts'' of the models that agree better with the Phillips relation. For example, models that produce a constant total mass of burned material of 1.1 +/- Msun do give a crude Phillips relation, albeit with much scatter. The scatter is further reduced if one restricts that set to models that make 0.1 to 0.3 Msun of stable iron and nickel isotopes, and then mix the ejecta strongly between the center and 0.8 Msun. We conclude that the supernovae that occur most frequently in nature are highly constrained by the Phillips relation and that a large part of the currently observed scatter in the relation is likely a consequence of the intrinsic diversity of these objects
- …