202 research outputs found

    Rectangular-Mask Coronagraphs for High-Contrast Imaging

    Full text link
    We present yet another new family of masks for high-contrast imaging as required for the to-be-built terrestrial planet finder space telescope. The ``best'' design involves a square entrance pupil having a 4-vane spider, a square image-plane mask containing a plus-sign shaped occulter to block the starlight inside 0.6 lambda/D, and a Lyot-plane mask consisting of a rectangular array of rectangular opennings. Using Fraunhofer analysis, we show that the optical system can image a planet 10^{-10} times as bright as an on-axis star in four rectangular regions given by {(xi,zeta): 1.4 < | xi | < 20, 1.4 < | zeta | < 20}. Since the design involves an image plane mask, pointing error is an issue. We show that the design can tolerate pointing errors of about 0.05 lambda/D. The inclusion of a 4-vane spider in the entrance pupil provides the possibility to build a mirror-only on-axis system thereby greatly reducing the negative effects of polarization. Each of the masks can be realized as two masks consisting of stripes of opaque material with the stripes oriented at right angles to each other. We call these striped masks barcode masks. We show that it is sufficient for the barcode masks by themselves to provide 10^{-5} contrast. This then guarantees that the full system will provide the required 10^{-10} contrast.Comment: 12 pages, 5 figure

    Optimal Occulter Design for Finding Extrasolar Planets

    Full text link
    One proposed method for finding terrestrial planets around nearby stars is to use two spacecraft--a telescope and a specially shaped occulter that is specifically designed to prevent all but a tiny fraction of the starlight from diffracting into the telescope. As the cost and observing cadence for such a mission will be driven largely by the separation between the two spacecraft, it is critically important to design an occulter that can meet the observing goals while flying as close to the telescope as possible. In this paper, we explore this tradeoff between separation and occulter diameter. More specifically, we present a method for designing the shape of the outer edge of an occulter that is as small as possible and gives a shadow that is deep enough and large enough for a 4m telescope to survey the habitable zones of many stars for Earth-like planets. In particular, we show that in order for a 4m telescope to detect in broadband visible light a planet 0.06 arcseconds from a star shining 101010^{10} times brighter than the planet requires a specially-shaped occulter 50m in diameter positioned about 72,00072,000 km in front of the telescope.Comment: 14 pages, 4 figures, 15 subfigure

    Spiderweb Masks for High-Contrast Imaging

    Get PDF
    Motivated by the desire to image exosolar planets, recent work by us and others has shown that high-contrast imaging can be achieved using specially shaped pupil masks. To date, the masks we have designed have been symmetric with respect to a cartesian coordinate system but were not rotationally invariant, thus requiring that one take multiple images at different angles of rotation about the central point in order to obtain high-contrast in all directions. In this paper, we present a new class of masks that have rotational symmetry and provide high-contrast in all directions with just one image. These masks provide the required 10^{-10} level of contrast to within 4 lambda/D, and in some cases 3 lambda/D, of the central point, which is deemed necessary for exosolar planet finding/imaging. They are also well-suited for use on ground-based telescopes, and perhaps NGST too, since they can accommodate central obstructions and associated support spiders.Comment: 20 pages, 9 figures, to appear in Ap

    Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

    Full text link
    Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.Comment: 41 pages, 15 figures; published in the JATIS special section on WFIRST-AFTA coronagraph

    Optimal pupil apodizations for arbitrary apertures

    Full text link
    We present here fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without central obstruction and spiders. Examples of optimal masks are shown for Subaru, SPICA and JWST. Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile.Comment: 16 pages, 10 figure

    Scaling Relation for Occulter Manufacturing Errors

    Get PDF
    For directly imaging exoplanets, NASA is considering space mission designs that use an external occulter as the principal starlight suppression system. These occulter designs range in diameter from 16 to 40 meters and separation distance from 8,000 to 60,000 kilometers for telescopes with primary diameters of 0.5 to 4 meters. Occulter shapes are solutions to an optimization problem which seeks to maximize suppression in the shadow subject to constraints such as size, separation, and wavelengths. These designs are based on scalar diffraction theory and must be verified experimentally to demonstrate predicted on-orbit performance. Due to the large sizes and separations involved the experiment must be scaled to lab size. We are currently expanding the existing experimental test-bed at Princeton to enable scaling of occulters operating at flight Fresnel sizes. Here we examine the effect on suppression performance of edge defects and their scaling to test-bed size
    • …
    corecore