16 research outputs found

    Degradation of Chloroaromatics: Purification and Characterization of a Novel Type of Chlorocatechol 2,3-Dioxygenase of Pseudomonas putida GJ31

    Get PDF
    A purification procedure for a new kind of extradiol dioxygenase, termed chlorocatechol 2,3-dioxygenase, that converts 3-chlorocatechol productively was developed. Structural and kinetic properties of the enzyme, which is part of the degradative pathway used for growth of Pseudomonas putida GJ31 with chlorobenzene, were investigated. The enzyme has a subunit molecular mass of 33.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the native Mr value under nondenaturating conditions by gel filtration gave a molecular mass of 135 ± 10 kDa, indicating a homotetrameric enzyme structure (4 × 33.4 kDa). The pI of the enzyme was estimated to be 7.1 ± 0.1. The N-terminal amino acid sequence (43 residues) of the enzyme was determined and exhibits 70 to 42% identity with other extradiol dioxygenases. Fe(II) seems to be a cofactor of the enzyme, as it is for other catechol 2,3-dioxygenases. In contrast to other extradiol dioxygenases, the enzyme exhibited great sensitivity to temperatures above 40°C. The reactivity of this enzyme toward various substituted catechols, especially 3-chlorocatechol, was different from that observed for other catechol 2,3-dioxygenases. Stoichiometric displacement of chloride occurred from 3-chlorocatechol, leading to the production of 2-hydroxymuconate.

    Wide variations in blood product transfusion practices among providers who care for patients with acute leukemia in the United States

    No full text
    BACKGROUND: Transfusion of blood products is a key component of the supportive management in patients with acute leukemia (AL). However high-quality trial evidence and clinical outcome data to support specific transfusion goals for blood products for patients with AL remain limited leading to diverse transfusion practices. The primary objective of this study was to determine the spectrum of transfusion patterns in a variety of care settings among providers who treat AL patients. STUDY DESIGN AND METHODS: A 31-question survey queried providers caring for AL patients about the existence of institutional guidelines for transfusion of blood products, transfusion triggers for hemoglobin (Hb), platelets (PLTs), and fibrinogen in various settings including inpatient, outpatient, and before procedures. RESULTS: We analyzed 130 responses and identified divergent transfusion Hb goals in hospitalized and ambulatory patients, fibrinogen goals for cryoprecipitate transfusions, and variation in practice for use of certain PLTs and red blood cell products. The least variable transfusion patterns were reported for PLT goals in thrombocytopenia and in the setting of invasive procedures such as bone marrow biopsy and lumbar punctures. CONCLUSIONS: This survey confirmed wide variations in blood product transfusion practices across several clinical scenarios in patients with AL. The findings emphasized the need for large prospective randomized trials to develop standardized evidence-based guidelines for blood product transfusions in patients with AL with the goal of limiting unnecessary transfusions without compromising outcomes
    corecore