5,040 research outputs found
Photovoltaic Effect and Utilization of Cells Semiannual Report, Jul. 1 - Dec. 31, 1966
Effects of electron irradiation on surface recombination velocity of n and p type silicon photovoltaic cells of various resistivitie
Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor
For the first time we calculate quantitatively the influence of
inhomogeneities on the global expansion factor by averaging the Friedmann
equation. In the framework of the relativistic second-order
Zel'dovich-approximation scheme for irrotational dust we use observational
results in form of the normalisation constant fixed by the COBE results and we
check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM,
WDM, Strings and Textures. We find that the influence of the inhomogeneities on
the global expansion factor is very small. So the error in determining the age
of the universe using the Hubble constant in the usual way is negligible. This
does not imply that the effect is negligible for local astronomical
measurements of the Hubble constant. Locally the determination of the
redshift-distance relation can be strongly influenced by the peculiar velocity
fields due to inhomogeneities. Our calculation does not consider such effects,
but is contrained to comparing globally homogeneous and averaged inhomogeneous
matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.
Lagrangian description of fluid flow with pressure in relativistic cosmology
The Lagrangian description of fluid flow in relativistic cosmology is
extended to the case of flow accelerated by pressure. In the description, the
entropy and the vorticity are obtained exactly for the barotropic equation of
state. In order to determine the metric, the Einstein equation is solved
perturbatively, when metric fluctuations are small but entropy inhomogeneities
are large. Thus, the present formalism is applicable to the case when the
inhomogeneities are small in the large scale but locally nonlinear.Comment: 11 pages (RevTeX); accepted for publication in Phys. Rev.
Wave Energy: a Pacific Perspective
This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by The Royal Society and can be found at: http://rsta.royalsocietypublishing.org/.This paper illustrates the status of wave energy development in Pacific Rim countries by characterizing the available resource and introducing the region‟s current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region‟s vision of the future of wave energy
Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array
The longest common prefix (LCP) array is a versatile auxiliary data structure
in indexed string matching. It can be used to speed up searching using the
suffix array (SA) and provides an implicit representation of the topology of an
underlying suffix tree. The LCP array of a string of length can be
represented as an array of length words, or, in the presence of the SA, as
a bit vector of bits plus asymptotically negligible support data
structures. External memory construction algorithms for the LCP array have been
proposed, but those proposed so far have a space requirement of words
(i.e. bits) in external memory. This space requirement is in some
practical cases prohibitively expensive. We present an external memory
algorithm for constructing the bit version of the LCP array which uses
bits of additional space in external memory when given a
(compressed) BWT with alphabet size and a sampled inverse suffix array
at sampling rate . This is often a significant space gain in
practice where is usually much smaller than or even constant. We
also consider the case of computing succinct LCP arrays for circular strings
Lagrangian description of the fluid flow with vorticity in the relativistic cosmology
We develop the Lagrangian perturbation theory in the general relativistic
cosmology, which enables us to take into account the vortical effect of the
dust matter. Under the Lagrangian representation of the fluid flow, the
propagation equation for the vorticity as well as the density is exactly
solved. Based on this, the coupling between the density and vorticity is
clarified in a non-perturbative way. The relativistic correspondence to the
Lagrangian perturbation theory in the Newtonian cosmology is also emphasized.Comment: 14 pages (RevTeX); accepted for publication in Phys. Rev.
Domain walls in (Ga,Mn)As diluted magnetic semiconductor
We report experimental and theoretical studies of magnetic domain walls in an
in-plane magnetized (Ga,Mn)As dilute moment ferromagnetic semiconductor. Our
high-resolution electron holography technique provides direct images of domain
wall magnetization profiles. The experiments are interpreted based on
microscopic calculations of the micromagnetic parameters and
Landau-Lifshitz-Gilbert simulations. We find that the competition of uniaxial
and biaxial magnetocrystalline anisotropies in the film is directly reflected
in orientation dependent wall widths, ranging from approximately 40 nm to 120
nm. The domain walls are of the N\'eel type and evolve from near-
walls at low-temperatures to large angle [10]-oriented walls and small
angle [110]-oriented walls at higher temperatures.Comment: 5 pages, 4 figure
Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future
This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud
with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud
this paper. As this research is guided by a real problem in industry, the flowshop\ud
considered has considerable flexibility, which stimulated the development of an\ud
innovative methodology for this research. Each stage of the flowshop currently has\ud
one or several identical machines. However, the manufacturing company is planning\ud
to introduce additional machines with different capabilities in different stages in the\ud
near future. Thus, the algorithm proposed and developed for the problem is not only\ud
capable of solving the current flow line configuration but also the potential new\ud
configurations that may result in the future. A meta-heuristic search algorithm based\ud
on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud
different initial solution finding mechanisms are proposed. A carefully planned\ud
nested split-plot design is performed to test the significance of different factors and\ud
their impact on the performance of the different algorithms. To the best of our\ud
knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud
problem with the concern for future developments
One-variable word equations in linear time
In this paper we consider word equations with one variable (and arbitrary
many appearances of it). A recent technique of recompression, which is
applicable to general word equations, is shown to be suitable also in this
case. While in general case it is non-deterministic, it determinises in case of
one variable and the obtained running time is O(n + #_X log n), where #_X is
the number of appearances of the variable in the equation. This matches the
previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a
couple of heuristics as well as more detailed time analysis the running time is
lowered to O(n) in RAM model. Unfortunately no new properties of solutions are
shown.Comment: submitted to a journal, general overhaul over the previous versio
- …