58 research outputs found
Tightly binding valence electron in aluminum observed through X-ray charge density study
Accurate and high reciprocal resolution experimental structure factors of aluminum were determined from a synchrotron powder X-ray diffraction data measured at 30 K with sin θ/λ < 2.31 Å−1. The structure factors have small deviations from independent atom model in sin θ/λ < 0.83 Å−1. Theoretical structure factors were prepared using density functional theoretical calculations by full potential linearized augmented plane wave method. The deviation between experimental and theoretical data was also observed at around sin θ/λ ≈ 0.4 Å−1. The charge density was determined by an extended Hansen-Coppens multipole modeling using experimental and theoretical structure factors. Charge density maxima at tetrahedral site were observed in both experimental and theoretical deformation density. The charge-density difference peaks indicating directional bonding formation were observed in the difference density between experiment and theory. The present study reveals tight binding like character of valence electron of aluminum. The fact will provide a crucial information for development of high-performance aluminum alloy
Aspherical and covalent bonding character of d electrons of molybdenum from synchrotron x-ray diffraction
The occupancies and spatial distribution of electrons for 4d-orbitals in pure molybdenum have been experimentally determined by a charge density study from synchrotron radiation x-ray powder diffraction. There are valence charge density maxima in interatomic positions indicating bond formation. The electron deficiencies of Γ12 orbitals were visualized in the observed static deformation density. An electron deficiency of ~0.5 was observed from the orbital population analysis through multipole refinement. The occupancies and spatial distribution have also been calculated by a density functional theoretical calculation using WIEN2k packages for comparison. The observed features agree well with the theoretical study. In addition, the observed charge density has more covalent bonding character than the theoretical one. The present study confirms that a state-of-the-art x-ray charge density study can reveal the spatial structure of d-electrons in 4d-system
Effects of Substituents on the Blue Luminescence of Disilane-Linked Donor‒Acceptor‒Donor Triads
A series of disilane-linked donor‒acceptor‒donor triads (D‒Si‒Si‒A‒Si‒Si‒D) was synthesized to investigate the effects of substituents on the photophysical properties. The triads were prepared by metal-catalyzed diiodosilylation of aryl iodides using a Pd(P(t-Bu)3)2/(i-Pr)2EtN/toluene system that we previously developed. Optical measurements, X-ray diffraction analysis, and density functional theory calculations revealed relationships between the photophysical properties and molecular structures of these triads in solution and in the solid state. The compounds emitted blue to green fluorescence in CH2Cl2 solution and in the solid state. Notably, compound 2 showed fluorescence with an absolute quantum yield of 0.17 in the solid state but showed no fluorescence in CH2Cl2. Our findings confirmed that the substituent adjacent to the disilane moiety affects the conformations and emission efficiencies of compounds in solution and in the solid state
VGLL3 is a mechanosensitive protein that promotes cardiac fibrosis through liquid–liquid phase separation
Myofibroblasts cause tissue fibrosis by producing extracellular matrix proteins, such as collagens. Humoral factors like TGF-β, and matrix stiffness are important for collagen production by myofibroblasts. However, the molecular mechanisms regulating their ability to produce collagen remain poorly characterised. Here, we show that vestigial-like family member 3 (VGLL3) is specifically expressed in myofibroblasts from mouse and human fibrotic hearts and promotes collagen production. Further, substrate stiffness triggers VGLL3 translocation into the nucleus through the integrin β1-Rho-actin pathway. In the nucleus, VGLL3 undergoes liquid-liquid phase separation via its low-complexity domain and is incorporated into non-paraspeckle NONO condensates containing EWS RNA-binding protein 1 (EWSR1). VGLL3 binds EWSR1 and suppresses miR-29b, which targets collagen mRNA. Consistently, cardiac fibrosis after myocardial infarction is significantly attenuated in Vgll3-deficient mice, with increased miR-29b expression. Overall, our results reveal an unrecognised VGLL3-mediated pathway that controls myofibroblasts’ collagen production, representing a novel therapeutic target for tissue fibrosis
Pressure-induced reversal of Peierls-like distortions elicits the polyamorphic transition in GeTe and GeSe
While polymorphism is prevalent in crystalline solids, polyamorphism draws increasing interest in various types of amorphous solids. Recent studies suggested that supercooling of liquid phase-change materials (PCMs) induces Peierls-like distortions in their local structures, underlying their liquid-liquid transitions before vitrification. However, the mechanism of how the vitrified phases undergo a possible polyamorphic transition remains elusive. Here, using high-energy synchrotron X-rays, we can access the precise pair distribution functions under high pressure and provide clear evidence that pressure can reverse the Peierls-like distortions, eliciting a polyamorphic transition in GeTe and GeSe. Combined with simulations based on machine-learned-neural-network potential, our structural analysis reveals a high-pressure state characterized by diminished Peierls-like distortion, greater coherence length, reduced compressibility, and a narrowing bandgap. Our finding underscores the crucial role of Peierls-like distortions in amorphous octahedral systems including PCMs. These distortions can be controlled through pressure and composition, offering potentials for designing properties in PCM-based devices
What Factors Are Associated with Good Performance in Children with Cochlear Implants? From the Outcome of Various Language Development Tests, Research on Sensory and Communicative Disorders Project in Japan: Nagasaki Experience
ObjectivesWe conducted multi-directional language development tests as a part of the Research on Sensory and Communicative Disorders (RSVD) in Japan. This report discusses findings as well as factors that led to better results in children with severe-profound hearing loss.MethodsWe evaluated multiple language development tests in 33 Japanese children with cochlear implants (32 patients) and hearing aid (1 patient), including 1) Test for question and answer interaction development, 2) Word fluency test, 3) Japanese version of the Peabody picture vocabulary test-revised, 4) The standardized comprehension test of abstract words, 5) The screening test of reading and writing for Japanese primary school children, 6) The syntactic processing test of aphasia, 7) Criterion-referenced testing (CRT) for Japanese language and mathematics, 8) Pervasive development disorders ASJ rating scales, and 9) Raven's colored progressive matrices. Furthermore, we investigated the factors believed to account for the better performances in these tests. The first group, group A, consisted of 14 children with higher scores in all tests than the national average for children with hearing difficulty. The second group, group B, included 19 children that scored below the national average in any of the tests.ResultsOverall, the results show that 76.2% of the scores obtained by the children in these tests exceeded the national average scores of children with hearing difficulty. The children who finished above average on all tests had undergone a longer period of regular habilitation in our rehabilitation center, had their implants earlier in life, were exposed to more auditory verbal/oral communication in their education at affiliated institutions, and were more likely to have been integrated in a regular kindergarten before moving on to elementary school.ConclusionIn this study, we suggest that taking the above four factors into consideration will have an affect on the language development of children with severe-profound hearing loss
Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe
SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low) have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2%) and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM) calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM). The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials
Associations between the orexin (hypocretin) receptor 2 gene polymorphism Val308Ile and nicotine dependence in genome-wide and subsequent association studies
Impact of the HCRTR2 gene risk variant on schizotypal personality traits (mean ± SD). (DOC 54 kb
- …