3,835 research outputs found

    Computation over galois fields using shiftregisters

    Get PDF
    This paper presents a technique for readily determining the shiftregister which multiplies by a given element of GF(2m)}, or which raises a given element of GF(2m)} to a given power. A matrix (called a connection matrix) is derived from a primitive polynomial and is corresponded to a particular shiftregister. The nth power of the matrix corresponds to the shiftregister which multiplies by Xn. Examples are presented to illustrate the application of the technique

    Anomalous quasiparticle transport in the superconducting state of CeCoIn5

    Full text link
    We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting symmetry. The onset of superconductivity is accompanied by a steep increase in the thermal Hall angle, pointing to a striking enhancement in the quasiparticle mean free path. This enhancement is drastically suppressed in a very weak magnetic field. These results highlight that CeCoIn_5 is unique among superconductors. A small Fermi energy, a large superconducting gap, a short coherence length, and a long mean free path all indicate that CeCoIn_5 is clearly in the superclean regime (E_F/Delta<<l/xi), in which peculiar vortex state is expected.Comment: 5 pages, 5 figure

    Superconducting Gap Function in Antiferromagnetic Heavy-Fermion UPd_2Al_3 Probed by Angle Resolved Magnetothermal Transport Measurements

    Full text link
    The superconducting gap structure of heavy fermion UPd_2Al_3, in which unconventional superconductivity coexists with antiferromagnetic (AF) order with atomic size local moments, was investigated by the thermal conductivity measurements in a magnetic field rotating in various directions relative to the crystal axes. The results provide strong evidence that the gap function \Delta(k) has a single line node orthogonal to the c-axis located at the AF Brillouin zone boundary, while \Delta(k) is isotropic within the basal plane. The determined nodal structure is compatible with the resonance peak in the dynamical susceptibility observed in neutron inelastic scattering experiments. Based on these results, we conclude that the superconducting pairing function of UPd_2Al_3 is most likely to be d-wave with a form \Delta(k)=\Delta_0 cos(k_zc)Comment: 10 pages, 9 figure

    Thermal Conductivity of the Pyrochlore Superconductor KOs2O6: Strong Electron Correlations and Fully Gapped Superconductivity

    Full text link
    To elucidate the nature of the superconducting ground state of the geometrically frustrated pyrochlore KOs2O6 (Tc=9.6K), the thermal conductivity was measured down to low temperatures (~Tc/100). We found that the quasiparticle mean free path is strikingly enhanced below a transition at Tp=7.5K, indicating enormous electron inelastic scattering in the normal state. In a magnetic field the conduction at T ->0K is nearly constant up to ~0.4Hc2, in contrast with the rapid growth expected for superconductors with an anisotropic gap. This unambiguously indicates a fully gapped superconductivity, in contrast to the previous studies. These results highlight that KOs2O6 is unique among superconductors with strong electron correlations.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
    corecore