7 research outputs found

    Enrichment of bovine milk-derived extracellular vesicles using surface-functionalized cellulose nanofibers

    Get PDF
    The isolation of extracellular vesicles (EVs) from milk, a complex mixture of colloidal structures having a comparable size to EVs, is challenging. Although ultracentrifugation (UC) has been widely used for EV isolation, this has significant limitations, including a long processing time at high g-force conditions and large sample volume requirements. We introduced a new approach based on nature nanoentities cellulose nanofibers (CNFs) and short time and low g-force centrifugation to isolate EVs from various milk fractions. The flexible and entangled network of CNFs forms nanoporous, which entraps the EVs. Further, positively charged CNFs interact with anionic EVs through an electrostatic attraction, promoting their isolation with efficiency comparable with UC. The functionality and toxicity of isolated milk EVs were tested in Caco2 cells. Overall, the newly developed approach provides straightforward isolation and biocompatibility and preserves the natural properties of the isolated EVs, enabling further applications

    Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents

    No full text
    Abstract Superabsorbent aerogels are fascinating materials for oil and chemical spillage cleanup. However, the development of an economic and efficient superabsorbent is still highly challenging. In this study, we introduce a novel approach to prepare very low density (0.005 g/cm3), highly porous (>99.6%), economic, reusable, hydrophobic, and magnetic spherical cellulose nanofiber-derived aerogels (i.e., aerobeads) prepared from waste boxboards via a simple freeze-drying procedure. The spherical aerobeads were fabricated easily after dropping a hydrophobized nano-fibrillated cellulose solution containing magnetic Fe3O4 nanoparticles into liquid nitrogen. The aerobeads showed outstanding absorption efficiency for several oils and organic solvents (up to 279 g/g with castor oil) and demonstrated excellent selectivity for absorbing oil from an oil/water mixture. Moreover, they were easily collected by an external magnet, indicating excellent recyclability and reusable for at least 10 cycles while still retaining supreme absorption capacity (up to 101 g/g for diesel oil). This study proposes an economic and novel method for the large-scale preparation of spherical superabsorbent aerobeads, making them a promising candidate for the efficient and sustainable cleaning of oil and chemical spills

    Zwitterionic hybrid aerobeads of binary metal organic frameworks and cellulose nanofibers for removal anionic pollutants

    No full text
    Abstract Different adsorbents have been applied to remove various anionic pollutants in water treatment processes. However, the development of economic, sustainable, and high-performance adsorbents is still a challenge. Herein, we introduce a new strategy to produce highly porous (98.96%), very low density (0.015 g/cm³), and cost-effective spherical and nanostructured hybrid aerogels, termed aerobeads, from cellulose nanofibers (CNF) and metal-organic frameworks (MOFs). The zwitterionic MOFs@CNF aerobeads (with 10–50 wt% MOF loading) were synthesized via simple dropping of a cross-linked hydrogel containing CNF and a binary mixture of anionic and cationic MOFs in liquid nitrogen, followed by freeze-drying. The flexible aerobeads (diameter of 2–3 mm) with hierarchical porous structure demonstrated an outstanding adsorption capacity toward both diclofenac (121.20 mg/g) and methyl orange (49.21 mg/g). Moreover, the aerobeads were easily collected after use from the solution without any complicated separation methods or the formation of secondary pollutants

    Nanocellulose as sustainable replacement for plastic substrates in printed electronics applications

    No full text
    Abstract The concepts of IoT, AI, I4.0, and 6G provide amazing opportunities for improving our quality of living, but also require tremendous amounts of data to operate as envisioned. To fulfil this demand for information, a large number of sensors and sensing devices is needed. Evolving sensing capabilities are associated with an increasing amount of electronic and plastic waste, which is rapidly becoming one of the major problems of our society. This research utilizes printed electronics as a method that is capable of fabricating high volumes of sensors to fulfil the requirements of emerging technologies. This study introduces printed environmentally friendly (carbon and water-based inks) conductive electrodes that could serve as vital signals’ sensors. Our results indicate that replacement of PET substrates with biodegradable nanocellulose increases the reliability of the printed electrodes, thanks to ink penetration into the nanocellulose structure. Successful utilization of biodegradable materials and printed electronics provides another example that positions printing technologies as one of the sustainable fabrication methods of the future

    Size exclusion and affinity-based removal of nanoparticles with electrospun cellulose acetate membranes infused with functionalized cellulose nanocrystals

    No full text
    Abstract Membrane filtration and affinity-based adsorption are the two most used strategies in separation technologies. Here, µm-thick multifunctional and sustainable composite membranes of electrospun cellulose acetate (CA) infused with functionalized, anionic, and cationic cellulose nanocrystals (CNCs) with enhanced wettability, tensile strength, and excellent retention capacities were designed. CNCs could uniformly impregnate into the three-dimensional CA network to effectively improve its properties. The impregnation of cationic CNCs at 0.5 wt% concentration drastically increased the tensile strength (1669%) while maintaining high permeation flux of 9400 Lm-2h-1 which is remarkable with cellulose modified electrospun membranes. The membranes infused with anionic CNCs exhibited a particle retention efficiency of 96% for 500 nm and 77% for 100 nm latex beads whilst the cationic CNC membranes exhibited a combined particle retention strategy using selectivity and size exclusion with a retention of >81% with 100 nm latex beads and 80% with ∼50 nm silver nanoparticles. We envision that the developed multifunctional membranes can be utilized for affinity-based and size-exclusion filtration to selectively trap bacteria or substances of biological significance

    Optical properties of cellulose nanofibre films at high temperatures

    No full text
    Abstract Nanocelluloses and their different designs, such as films and nanopapers, have gained considerable interest in many application areas due to their unique properties. For many purposes, such as packaging and electronics, the thermal stability and optical properties of nanocellulose materials are crucial characteristics. In this study, the effects of heat treatment (100 ºC, 150 ºC and 200 ºC) on the optical and mechanical properties of 2,2,6,6-tetramethylpiperidinyl-1-oxy radical-oxidised cellulose nanofibre (TO-CNF) films were investigated, especially the alteration of the colour, complex refractive index and birefringence. Exposing TO-CNF films to high temperatures (> 150 ºC) induced permanent transformations in the CNF structure, leading to an increase in the refractive index, decreases in the birefringence and crystallinity index, colour darkening and significant deterioration of the mechanical properties

    Enrichment of bovine milk-derived extracellular vesicles using surface-functionalized cellulose nanofibers

    No full text
    Abstract The isolation of extracellular vesicles (EVs) from milk, a complex mixture of colloidal structures having a comparable size to EVs, is challenging. Although ultracentrifugation (UC) has been widely used for EV isolation, this has significant limitations, including a long processing time at high g-force conditions and large sample volume requirements. We introduced a new approach based on nature nanoentities cellulose nanofibers (CNFs) and short time and low g-force centrifugation to isolate EVs from various milk fractions. The flexible and entangled network of CNFs forms nanoporous, which entraps the EVs. Further, positively charged CNFs interact with anionic EVs through an electrostatic attraction, promoting their isolation with efficiency comparable with UC. The functionality and toxicity of isolated milk EVs were tested in Caco2 cells. Overall, the newly developed approach provides straightforward isolation and biocompatibility and preserves the natural properties of the isolated EVs, enabling further applications
    corecore