33 research outputs found

    Microtextural characterisation of the Lower Zone in the western limb of the Bushveld Complex, South Africa: evidence for extensive melt migration within a sill complex

    Get PDF
    The Lower Zone of the Bushveld Complex comprises an up to 2-km-thick package of different ultramafic rock types with an approx. 90-cm-thick, sulphide-bearing noritic interval that occurs in the western and eastern limbs. The distribution and geometry of the zone are highly variable across the Complex, showing pronounced, yet laterally discontinuous layering on different scales. Together with the ubiquitous lack of large-scale fractionation in the Mg# of orthopyroxene, variable Sr isotope compositions and erratic Pt/Pd ratios, these observations strongly suggest an emplacement of the Lower Zone as a sill complex, as these contrasting geochemical characteristics are difficult to account for in a large Bushveld magma chamber, as previously suggested. It is more likely that these sills were episodically fed from a sub-Bushveld staging chamber, and variably contaminated, while passing through the crust before their final emplacement in the Lower Zone. Detailed mineralogical and microtextural work based on high-resolution elemental mapping of a set of samples, covering the entire Lower Zone stratigraphy of the western Bushveld shows that the variations in the late crystallising interstitial mineral mode are different from what would be expect, if all phases crystallised from a fixed initial mass of interstitial liquid. The interstitial mineral mode, represented by plagioclase, clinopyroxene and other late stage phases, shows variable ratios of these minerals ranging from ca. 21:15:64 to 75:17:8. In comparison to modelled expected ratios, most of the analysed rocks have higher amounts of early crystallising interstitial phases (e.g. plagioclase, clinopyroxene), relative to late crystallising phases (e.g. quartz, alkali feldspar). Therefore, interstitial melt must have migrated at different stages of fractionation during cumulate solidification, as a consequence of either compaction or displacement by convecting interstitial liquids. Two samples, however, show the opposite: late phases are relatively more abundant than early ones, which is consistent with a convection-driven replacement of primitive interstitial liquid by more evolved liquid. These results have important implications for the interpretation of the Lower Zone and, by extension, for layered intrusions in general: (1) interstitial sulphide mineralisation may be introduced into a cumulate through infiltrating melts, i.e. the liquid components of a sulphur-saturated crystal mush are not withheld from further migration, upon interaction with a cumulate pile; (2) most importantly, late stage minerals, such as zircon, rarely crystallise from trapped liquid that was initially in equilibrium with the cumulate. Therefore, dating of interstitial zircon from cumulates is unlikely to record the actual timing of emplacement, but merely the crystallisation of a later episode of residual melt that migrated through the cumulate

    Tłumaczenie z języka polskiego na język francuski w dochodzeniu roszczeń alimentacyjnych za granicą: słowniki dwujęzyczne i teksty paralelne w pracy tłumacza

    Get PDF
    In the article the problem of certified translation performed in the course of recovery of maintenance abroad is discussed. Firstly, it presents the main characteristics of the object of translation, and then answers the question why parallel texts are nowadays a better tool for a translator as compared to Polish-French legal terminology dictionaries that are traditional in their form. The practice of certified translation shows that the terminological-phraseological dimension of maintenance claims enforcement adopted in Poland and in France still fails to be reflected in specialist dictionaries. Multilingual legal acts and other parallel texts, by contrast, allow the translator to have an access to current language resources in the field of international legal transactions.Autor porusza problematykę tłumaczenia poświadczonego w dochodzeniu roszczeń alimentacyjnych za granicą z punktu widzenia tłumacza. Najpierw przedstawia funkcję i przedmiot tłumaczenia, a następnie wyjaśnia na przykładach z własnej praktyki translatorskiej, dlaczego odpowiednie teksty paralelne są obecnie lepszym narzędziem pracy od polsko-francuskich słowników terminologii prawniczej

    New approaches in understanding layered intrusions: field-based and analytical evidence from the Bushveld and Monchegorsk complexes

    Get PDF
    The formation of layered intrusions remains one of the most important, yet unresolved issues in the study of mafic-ultramafic systems, although they are of major economic significance, hosting more than 80 % of the world's platinum-group element (PGE) resource. In many layered intrusions, PGE mineralisation is associated with stratigraphic intervals that are characterised by pronounced igneous layering. Thus, the origin of layering and the emplacement mechanism of individual layers are closely related to the formation of PGE deposits. In this study, field-based and analytical evidence from the Bushveld Complex of South Africa and the Monchegorsk Complex in Russia is used to gain a better understanding of the small- and large-scale processes associated with the emplacement of layered intrusions. Detailed examination of drill core and field exposures suggest that sill-like intrusions of crystal mushes play an important role in the formation of layered intrusions, especially in the lower ultramafic portions of large complexes. In contrast, the in situ Sr isotope analysis of plagioclase from the upper portion of the Bushveld Complex indicates that the more mafic portions may also crystallise in situ from crystal-poor magmas, which can also undergo mixing. Moreover, mineralogical and microtextural work based on high-resolution elemental mapping highlights the importance of melt migration at different stages of cumulate solidification as a consequence of displacement by convecting interstitial liquids and compaction. Further, broadly stratiform PGE mineralisation in the Monchegorsk Complex cannot always be explained by a classic PGE reef model, in which the mineralised horizon marks the transition from sulfide-undersaturated to sulfide-saturated conditions. It is more likely that preformed sulfides were entrained in crystal mushes and emplaced into a semi-consolidated cumulate pile at different levels of the layered intrusion. Ultimately, thermal modelling shows that a multi-stage emplacement history of a complex should be regarded as highly prospective with respect to PGE-Ni-Cu mineralisation

    Formation of transgressive anorthosite seams in the Bushveld Complex via tectonically induced mobilisation of plagioclase-rich crystal mushes

    Get PDF
    The formation of anorthosites in layered intrusions has remained one of petrology’s most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromitite in the Upper Critical Zone of the eastern Bushveld Complex at the Smokey Hills platinum mine. Layers show very strong medium to large scale lateral continuity, but abundant small scale irregularities and transgressive relationships. Particularly notable are irregular masses and seams of anorthosite that have intrusive relationships to their host rocks. An anorthosite layer locally transgresses several 10 s of meters into its footwall, forming what is referred to as a “pothole” in the Bushveld Complex. It is proposed that the anorthosites formed from plagioclase-rich crystal mushes that originally accumulated at or near the top of the cumulate pile. The slurries were mobilised during tectonism induced by chamber subsidence, a model that bears some similarity to that generally proposed for oceanic mass flows. The anorthosite slurries locally collapsed into pull-apart structures and injected their hostrocks. The final step was down-dip drainage of Fe-rich intercumulus liquid, leaving behind anorthosite adcumulates

    A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa

    Get PDF
    A chill sequence at the base of the Lower Zone of the western Bushveld Complex at Union Section, South Africa, contains aphanitic Mg-rich basaltic andesite and spinifex-textured komatiite. The basaltic andesite has an average composition of 15.2 % MgO, 52.8 % SiO2, 1205 ppm Cr, and 361 ppm Ni, whereas the komatiite has 18.7 % MgO, 1515 ppm Cr, and 410 ppm Ni. Both rock types have very low concentrations of immobile incompatible elements (0.14–0.72 ppm Nb, 7–31 ppm Zr, 0.34–0.69 ppm Th, 0.23–0.27 wt% TiO2), but high PGE contents (19–23 ppb Pt, 15–16 ppb Pd) and Pt/Pd ratios (Pt/Pd 1.4). Strontium and S isotopes show enriched signatures relative to most other Lower Zone rocks. The rocks could represent a ~20 % partial melt of subcontinental lithospheric mantle. This would match the PGE content of the rocks. However, this model is inconsistent with the high SiO2, Fe, and Na2O contents and, in particular, the low K2O, Zr, Hf, Nb, Ta, Th, LREE, Rb, and Ba contents of the rocks. Alternatively, the chills could represent a komatiitic magma derived from the asthenosphere that underwent assimilation of the quartzitic floor accompanied by crystallization of olivine and chromite. This model is consistent with the lithophile elements and the elevated Sr and S isotopic signatures of the rocks. However, in order to account for the high Pt and Pd contents of the magma, the mantle must have been twice as rich in PGE as the current estimate for PUM, possibly due to a component of incompletely equilibrated late veneer

    New insights into the petrogenesis of the Jameson Range layered intrusion and associated Fe-Ti-P-V-PGE-Au mineralisation, West Musgrave Province, Western Australia

    Get PDF
    The Mesoproterozoic Jameson Range intrusion forms part of the Giles Complex, Musgrave Province, Western Australia. It is predominantly mafic in composition comprising olivine-bearing gabbroic lithologies with variable amounts of magnetite and ilmenite. Lithologies containing more than 50 vol% magnetite and ilmenite are classified as magnetitites. The Jameson Range hosts several of these magnetitites forming laterally extensive layers, which can be traced for at least 19 km as continuous magnetic anomalies. Similar occurrences of magnetitites are known from the upper parts of other layered intrusions, such as the Bushveld Complex. In addition, the intrusion hosts several P-rich zones, one of which is at least 59 m in thickness containing 1.0 wt% P2O5. The P-rich zones are not directly associated with the magnetitites, but they mostly occur slightly above them. The mineral chemistry of the Jameson Range cumulates is relatively evolved with olivine compositions ranging from Fo44 to Fo60 and plagioclase compositions varying between An56 and An59. The Mg# (100 × Mg / (Mg + Fe)) of ortho- and clinopyroxene ranges from 60 to 61 and from 70 to 75, respectively. Magnetite compositions are characterised by low TiO2 concentrations varying from 0.39 to 3.04 wt% representing near end-member magnetite with up to 1.2 wt% Cr and 1.3 wt% V, respectively. The basal magnetite layer reaches up to 68.8 wt% Fe2O3(t) and 24.2 wt% TiO2, and it is also markedly enriched in Cu (up to 0.3 wt% Cu), V (up to 1.05 wt% V2O5) and platinum-group elements (PGE) (up to 2 ppm Pt + Pd). Sulphide minerals comprising bornite, chalcopyrite and minor pentlandite occur finely disseminated in the magnetitite and account for the elevated base metal and PGE concentrations. Modelling indicates that the PGE mineralisation was formed at very high R factors of up to 100,000, which is typical for PGE reefs in layered intrusions. Whole rock geochemical and mineralogical data of the magnetite layers and their host rocks further allow for a refinement of current formation models of layered igneous sequences. Several lines of evidence suggest that the magnetite layers formed in response to primarily density-controlled mineral sorting within crystal slurries, although the grain size also affects the sorting process

    In situ Sr isotope compositions of plagioclase from a complete stratigraphic profile of the Bushveld Complex, South Africa: evidence for extensive magma mixing and percolation

    Get PDF
    The cumulates of the Bushveld Complex, which form the largest layered intrusion on Earth, are known to have crystallized from several isotopically distinct magma pulses. Here, we present in situ Sr isotope compositions combined with the corresponding mineral chemistry of plagioclase from all lithological zones, covering > 6 km of stratigraphy, to constrain the petrogenesis of the complex. The in situ data coupled with high-resolution elemental maps of individual plagioclase grains reveal complex zonation patterns with respect to mineral chemistry and Sr isotope composition. This suggests that interstitial plagioclase in the Bushveld Complex crystallized from multiple, isotopically distinct influxes of melt percolating through a mafic cumulate framework and displacing the resident melt. Similarly, cumulus plagioclase grains are the result of continual ingress of a distinct magma, which picked up previously formed plagioclase crystals. Sr isotope compositions across the layered sequence seem to be largely decoupled from differentiation indices, such as Mg#, anorthite content or trace element ratios. As these observations cannot be explained by bulk assimilation, we propose that the elevated Sr isotopic signature of the Bushveld cumulates may have resulted from the interaction of the parental magma with a fluid derived from the up to 2 km thick dolomitic footwall, which caused a major shift in Sr isotope composition without significantly affecting the degree of differentiation or trace element signature. The decarbonation and/or assimilation of dolomite during the intrusion of the Bushveld Complex may be of major importance, not only for the petrogenesis but also for the emplacement of the layered intrusion, because devolatilization is directly linked to space creation owing to volume loss, thus producing a lopolith

    Element mapping the Merensky Reef of the Bushveld Complex

    Get PDF
    The Merensky Reef hosts one of the largest PGE resources globally. It has been exploited for nearly 100 years, yet its origin remains unresolved. In the present study, we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy. Our results indicate that the Merensky Reef formed through a range of diverse processes. Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth. The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow. Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation. The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts. Olivine-hosted melt inclusions containing Cl-rich apatite, sodic plagioclase, and phlogopite suggest the presence of highly evolved, volatile-rich melts. Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase, possibly triggered by flux of heat, acidic fluids, or hydrous melt. Together, these data suggest that the reef formed through a combination of magmatic, hydrodynamic and hydromagmatic processes

    Low-sulfide platinum-palladium deposits of the Paleoproterozoic Fedorova-Pana Layered Complex, Kola Region, Russia

    Get PDF
    Several deposits of low-sulfide Pt–Pd ores have been discovered in recent decades in the Paleoproterozoic Fedorova–Pana Layered Complex located in the Kola Region (Murmansk Oblast) of Russia. The deposits are divided into two types: reef-style, associated with the layered central portions of intrusions, and contact-style, localized in the lower parts of intrusions near the contact with the Archean basement. The Kievey and the North Kamennik deposits represent the first ore type and are confined to the North PGE Reef located 600–800 m above the base of the West Pana Intrusion. The reef is associated with a horizon of cyclically interlayered orthopyroxenite, gabbronorite and anorthosite. The average contents of Au, Pt and Pd in the Kievey ore are 0.15, 0.53 and 3.32 ppm, respectively. The North Kamennik deposit has similar contents of noble metals. The Fedorova Tundra deposit belongs to the second ore type and has been explored in two sites in the lower part of the Fedorova intrusion. Mineralization is mainly associated mainly with taxitic or varied-textured gabbronorites, forming a matrix of intrusive breccia with fragments of barren orthopyroxenite. The ores contain an average of 0.08 ppm Au, 0.29 ppm Pt and 1.20 ppm Pd. In terms of PGE resources, the Fedorova Tundra is the largest deposit in Europe, hosting more than 300 tons of noble metals
    corecore