41 research outputs found

    Plasma-enhanced atomic layer deposition of nanostructured gold near room temperature

    Get PDF
    A plasma-enhanced atomic layer deposition (PE-ALD) process to deposit metallic gold is reported, using the previously reported Me3Au(PMe3) precursor with H-2 plasma as the reactant. The process has a deposition window from 50 to 120 degrees C with a growth rate of 0.030 +/- 0.002 nm per cycle on gold seed layers, and it shows saturating behavior for both the precursor and reactant exposure. X-ray photoelectron spectroscopy measurements show that the gold films deposited at 120 degrees C are of higher purity than the previously reported ones (<1 at. % carbon and oxygen impurities and <0.1 at. % phosphorous). A low resistivity value was obtained (5.9 +/- 0.3 mu Omega/cm), and X-ray diffraction measurements confirm that films deposited at 50 and 120 degrees C are polycrystalline. The process forms gold nanoparticles on oxide surfaces, which coalesce into wormlike nanostructures during deposition. Nanostructures grown at 120 degrees C are evaluated as substrates for free-space surface-enhanced Raman spectroscopy (SERS) and exhibit an excellent enhancement factor that is without optimization, only one order of magnitude weaker than state-of-the-art gold nanodome substrates. The reported gold PE-ALD process therefore offers a deposition method to create SERS substrates that are template-free and does not require lithography. Using this process, it is possible to deposit nanostructured gold layers at low temperatures on complex three-dimensional (3D) substrates, opening up opportunities for the application of gold ALD in flexible electronics, heterogeneous catalysis, or the preparation of 3D SERS substrates

    Atomic layer deposition of nanoalloys of noble and non-noble metals

    Get PDF
    We present a novel ALD-based approach for the synthesis of bimetallic materials consisting of a noble metal along with a nonnoble metal such as Pt-M (M = In, Ga, Sn, etc.), with a precise control on the composition and size. First, a bilayer consisting of a metal oxide and a Pt film of the desired thickness is deposited on to the substrate. The film is then subjected to a temperature programmed reduction (TPR) under H2 atmosphere. In situ X-ray diffraction (XRD) measurements during TPR revealed the formation of Pt±M bimetallic alloys with a phase determined by the Pt/(Pt + M) atomic ratio of the as-deposited bilayer. Scanning electron microscopic (SEM) analysis revealed the formation nanoparticles after annealing, with the particle size controlled by the initial total thickness of the bilayer

    Size- and composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer deposition

    Get PDF
    Pt-Sn bimetallic nanoparticles (BMNPs) are used in a variety of catalytic reactions and are widely accepted as a model system for Pt-based bimetallics in fundamental catalysis research. Here, Pt-Sn BMNPs were prepared via a two-step synthesis procedure combining atomic layer deposition (ALD) and temperature programmed reduction (TPR). In situ X-ray diffraction measurements during TPR and ex situ X-ray absorption spectroscopy at the Pt L-III-edge revealed the formation of Pt-Sn bimetallic alloys with a phase determined by the Pt/(Pt + Sn) atomic ratio of the as-deposited bilayer. The size of the BMNPs could be tuned by changing the total thickness of the bilayers, while keeping the Pt/(Pt + Sn) atomic ratio constant. Due to the exceptional control over BMNP size and crystalline phase, the proposed method will enable highly systematic studies of the relation between the structure and the performance of Pt-Sn bimetallic catalysts

    Surface mobility and impact of precursor dosing during atomic layer deposition of platinum : in situ monitoring of nucleation and island growth

    Get PDF
    The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O-2 gas at 300 degrees C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts

    In situ study of the thermal stability of supported Pt nanoparticles and their stabilization via atomic layer deposition overcoating

    Get PDF
    Downscaling of supported Pt structures to the nanoscale is motivated by the augmentation of the catalytic activity and selectivity, which depend on the particle size, shape and coverage. Harsh thermal and chemical conditions generally required for catalytic applications entail an undesirable particle coarsening, and consequently limit the catalyst lifetime. Herein we report an in situ synchrotron study on the stability of supported Pt nanoparticles and their stabilization using atomic layer deposition (ALD) as the stabilizing methodology against particle coarsening. Pt nanoparticles were thermally annealed up to 850 degrees C in an oxidizing environment while recording in situ synchrotron grazing incidence small angle X-ray scattering (GISAXS) 2D patterns, thereby obtaining continuous information about the particle radius evolution. Al2O3 overcoat as a protective capping layer against coarsening via ALD was investigated. In situ data proved that only 1 cycle of Al2O3 ALD caused an augmentation of the onset temperature for particle coarsening. Moreover, the results showed a dependence of the required overcoat thickness on the initial particle size and distribution, being more efficient (i.e. requiring lower thicknesses) when isolated particles are present on the sample surface. The Pt surface accessibility, which is decisive in catalytic applications, was analyzed using the low energy ion scattering (LEIS) technique, revealing a larger Pt surface accessibility for a sample with Al2O3 overcoat than for a sample without a protective layer after a long-term isothermal annealing
    corecore