22 research outputs found

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Polyaniline/palladium nanohybrids for moisture and hydrogen detection.

    Get PDF
    Palladium nanoparticles display fascinating electronic, optical and catalytic properties, thus they can be used for various applications such as sensor fabrication. Conducting polymers such as polyaniline have also been widely used in sensor technology due to its cost effectiveness, versatility, and ease of synthesis. In this research, attention was given to unify the exceptional properties of these two materials and construct palladium nanoparticle coated polyaniline films to detect hydrogen and moisture. Electrochemical polymerization of aniline was carried out on gold sputtered epoxy resin boards. Polyaniline film was generated across a gap of 0.2 mm created by a scratch made on the gold coating prior to electrochemical polymerization. A palladium nanoparticle dispersion was prepared using sonochemical reduction method and coated on to polyaniline film using drop-drying technique. Polyaniline only films were also fabricated for comparative analysis. Sensitivity of films towards humidity and hydrogen was evaluated using impedance spectroscopy in the presence of the respective species. According to the results, polyaniline films exhibited an impedance drop in the presence of humidity and the response was significantly improved once palladium nanoparticles were incorporated. Interestingly, polyaniline only films did not respond to hydrogen. Nevertheless, palladium nanoparticle coated polyaniline films exhibited remarkable response towards hydrogen

    Development of universal fabric dyeing and adhesion through RF glow discharge plasma treatment

    No full text
    Various dyeing techniques are utilised at dyeing different types of fabrics and current study discuss the possibility of using a single dye bath for the given purpose. The current study utilised a radio frequency glow discharge plasma source maintained at near atmospheric conditions (around 200 mbar) in nitrogen and air environments to treat cotton, nylon, and polyester fabrics. Similar surface modifications produced in all three types of fabrics by OH and O radicals tailoring them more sensitive to certain dyes and glues. SEM images verified that bulk material is well protected by plasma treatment and the presence of additional surface functionalities (hydroxyl, carboxylic, and carbon-nitrogen groups) on the treated fabric surfaces were determined by FTIR and XPS analysis. The plasma-treated samples were dyed in a single dye bath using a reactive dye under atmospheric neutral conditions and a significant enhancement in fabric dyeability (cotton- 124%, nylon- 61%, polyester- 38%) was observed. PVA glue was used for fastening the fabric samples and the adhesion was analysed through tensile measurement. Well improved adhesion capabilities (148%, 95%, and 57.3% respectively for cotton, nylon, and polyester) also confirm the advantages of RF glow discharge plasma treatment for unified fabric processing
    corecore