36 research outputs found

    Clinical and Translational Implications of Centrosome Amplification and Clustering in Multiple Malignancies

    Get PDF
    Cancer initiation and progression are multistep processes that rely on the generation and accumulation of non-lethal mutations, which deregulate function of tumor suppressor genes and activate oncogenic pathways. Evolving through a landscape of heterogeneous somatic mutations, mutated cells undergo subsequent selection pressures and the one endowed with the greatest fitness advantage survives giving rise to genetically diverse cell populations resulting in intratumor heterogeneity (ITH). Presence of the abnormal number of centrosomes is one of the key factors contributing towards ITH. Clustering of amplified centrosomes allows cancer cells to avoid mitotic spindle multipolarity that could otherwise result in cell death either by mitotic catastrophe or a high-grade multipolar division yielding intolerably severe aneuploidy. Thus, centrosome clustering enables low-grade chromosomal missegregation and their unequal distribution to daughter cells resulting in chromosomal instability (CIN), thus contributing to neoplastic transformation. Owing to the presence of genetically different cells in a tumor, monotargeted therapy spares clones lacking therapy-specific targets giving them the opportunity to repopulate the tumor with immunity toward the applied therapy and propensity to recur. Therefore, ITH poses major challenges to both clinicians and drug developers as it precludes detection of low-level clones, prediction of tumor evolution, development of drugs to target specific clones and evaluation of effective, yet non-toxic combinatorial regimens to combat ITH. I envision that a comprehensive quantitative analysis of centrosome amplification (CA), which is a bonafide driver of ITH might help better understand clinical behavior and improve therapeutic management of tumors. To this end, my research, presented here, primarily focuses on testing i) the impact of centrosome amplification and centrosome clustering protein (KIFC1) on clinical outcomes in multiple malignancies and ii) the role of tumor hypoxia in inducing centrosome amplification in cancer. Collectively, my findings reveal that CA and KIFC1 are prognostic and predictive in multiple malignancies and that tumor hypoxia plays a crucial role in inducing CA in tumors. This body of work expands our knowledge in causes and clinical implications of CA to help guide treatment decisions and development of precision medicine for multiple malignancies

    The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ

    Get PDF
    Background: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour progression. CTSA is differentially expressed at the mRNA level between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to characterise CTSA protein expression in DCIS and evaluate its prognostic significance. Methods: A large cohort of DCIS (n=776 for pure DCIS and n=239 for DCIS associated with IBC (DCIS/IBC)) prepared as tissue microarray was immunohistochemically stained for CTSA. Results: High CTSA expression was observed in 48% of pure DCIS. High expression was associated with features of poor DCIS prognosis including younger age at diagnosis (less than 50 years), higher nuclear grade, hormone receptor negativity, HER2 positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. High CTSA expression was associated with shorter recurrence free interval (RFI) (p=0.0001). In multivariate survival analysis for patients treated with breast conserving surgery, CTSA was an independent predictor of shorter RFI (p=0.015). DCIS associated with IBC showed higher CTSA expression than pure DCIS (p=0.04). In the DCIS/IBC cohort, CTSA expression was higher in the invasive component than DCIS component (p less than 0.0001). Conclusion: CTSA is not only associated with aggressive behaviour and poor outcome in DCIS but also a potential marker to predict co-existing invasion in DCIS

    A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas

    Get PDF
    Background Amplified centrosomes are widely recognized as a hallmark of cancer. Although supernumerary centrosomes would be expected to compromise cell viability by yielding multipolar spindles that results in death-inducing aneuploidy, cancer cells suppress multipolarity by clustering their extra centrosomes. Thus, cancer cells, with the aid of clustering mechanisms, maintain pseudobipolar spindle phenotypes that are associated with low-grade aneuploidy, an edge to their survival. KIFC1, a nonessential minus end-directed motor of the kinesin-14 family, is a centrosome clustering molecule, essential for viability of extra centrosome-bearing cancer cells. Given that ovarian cancers robustly display amplified centrosomes, we examined the overexpression of KIFC1 in human ovarian tumors. Results We found that in clinical epithelial ovarian cancer (EOC) samples, an expression level of KIFC1 was significantly higher when compared to normal tissues. KIFC1 expression also increased with tumor grade. Our In silico analyses showed that higher KIFC1 expression was associated with poor overall survival (OS) in serous ovarian adenocarcinoma (SOC) patients suggesting that an aggressive disease course in ovarian adenocarcinoma patients can be attributed to high KIFC1 levels. Also, gene expression levels of KIFC1 in high-grade serous ovarian carcinoma (HGSOC) highly correlated with expression of genes driving centrosome amplification (CA), as examined in publically-available databases. The pathway analysis results indicated that the genes overexpressed in KIFC1 high group were associated with processes like regulation of the cell cycle and cell proliferation. In addition, when we performed gene set enrichment analysis (GSEA) for identifying the gene ontologies associated to KIFC1 high group, we found that the first 100 genes enriched in KIFC1 high group were from centrosome components, mitotic cell cycle, and microtubule-based processes. Results from in vitro experiments on well-established in vitro models of HGSOC (OVSAHO, KURAMOCHI), OVCAR3 and SKOV3) revealed that they display robust centrosome amplification and expression levels of KIFC1 was directly associated (inversely correlated) to the status of multipolar mitosis. This association of KIFC1 and centrosome amplification with HGSOC might be able to explain the increased aggressiveness in this disease. Conclusion These findings compellingly underscore that KIFC1 can be a biomarker that predicts an aggressive disease course in ovarian adenocarcinomas

    Rampant Centrosome Amplification Underlies more Aggressive Disease Course of Triple Negative Breast Cancers

    Get PDF
    Centrosome amplification (CA), a cell-biological trait, characterizes pre-neoplastic and pre-invasive lesions and is associated with tumor aggressiveness. Recent studies suggest that CA leads to malignant transformation and promotes invasion in mammary epithelial cells. Triple negative breast cancer (TNBC), a histologically-aggressive subtype shows high recurrence, metastases, and mortality rates. Since TNBC and non- TNBC follow variable kinetics of metastatic progression, they constitute a novel test bed to explore if severity and nature of CA can distinguish them apart. We quantitatively assessed structural and numerical centrosomal aberrations for each patient sample in a large-cohort of grade-matched TNBC (n = 30) and non-TNBC (n = 98) cases employing multi-color confocal imaging. Our data establish differences in incidence and severity of CA between TNBC and non-TNBC cell lines and clinical specimens. We found strong correlation between CA and aggressiveness markers associated with metastasis in 20 pairs of grade-matched TNBC and non-TNBC specimens (p \u3c 0.02). Time-lapse imaging of MDA-MB-231 cells harboring amplified centrosomes demonstrated enhanced migratory ability. Our study bridges a vital knowledge gap by pinpointing that CA underlies breast cancer aggressiveness. This previously unrecognized organellar inequality at the centrosome level may allow early-risk prediction and explain higher tumor aggressiveness and mortality rates in TNBC patients

    A novel biosignature identifies patients with DCIS with high risk of local recurrence after breast conserving surgery and radiation therapy

    Get PDF
    PURPOSE: There is an unmet need to identify women diagnosed with ductal carcinoma in situ (DCIS) with a low risk of in-breast recurrence (IBR) after breast conserving surgery (BCS), which could omit radiation therapy (RT), and also to identify those with elevated IBR risk remaining after BCS plus RT. We evaluated a novel biosignature for a residual risk subtype (RRt) to help identify patients with elevated IBR risk after BCS plus RT. METHODS AND MATERIALS: Women with DCIS treated with BCS with or without RT at centers in the US, Australia, and Sweden (n = 926) were evaluated. Patients were classified into 3 biosignature risk groups using the decision score (DS) and the RRt category: (1) Low Risk (DS ≤2.8 without RRt), (2) Elevated Risk (DS \u3e2.8 without RRt), and (3) Residual Risk (DS \u3e2.8 with RRt). Total and invasive IBR rates were assessed by risk group and treatment. RESULTS: In patients at low risk, there was no significant difference in IBR rates with or without RT (total, P = .8; invasive IBR, P = .7), and there were low overall 10-year rates (total, 5.1%; invasive, 2.7%). In patients with elevated risk, IBR rates were decreased with RT (total: hazard ratio [HR], 0.25; P \u3c .001; invasive: HR, 0.28; P = .005); 10-year rates were 20.6% versus 4.9% (total) and 10.9% versus 3.1% (invasive). In patients with residual risk, although IBR rates decreased with RT after BCS (total: HR, 0.21; P \u3c .001; invasive: HR, 0.29; P = .028), IBR rates remained significantly higher after RT compared with patients with elevated risk (HR, 2.5; 95% CI, 1.2-5.4; P = .018), with 10-year rates of 42.1% versus 14.7% (total) and 18.3% versus 6.5% (invasive). CONCLUSIONS: The novel biosignature identified patients with 3 distinct risk profiles: Low Risk patients with a low recurrence risk with or without adjuvant RT, Elevated Risk patients with excellent outcomes after BCS plus RT, and Residual Risk patients with an elevated recurrence risk remaining after BCS plus RT, warranting potential intensified or alternative treatment approaches

    Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study

    Get PDF
    Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of collagen fibre remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ (DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of the geometric characteristics of collagen surrounding DCIS. A large well-characterized cohort of DCIS comprising pure DCIS (n=610) and DCIS co-existing with invasive carcinoma (n=180) were histochemically stained for collagen using picrosirius red. ImageJ software was used to assess collagen density, degree of collagen fibre dispersion and directionality in relation to DCIS ducts’ boundary. We developed a collagen prognostic index and evaluated its prognostic significance. A poor index was observed in 24% of the pure DCIS and was associated with determinants of high-risk DCIS including higher grade, comedo necrosis, hormonal receptor negativity, HER2 positivity and high proliferation index. High index was associated with overexpression of the collagen remodeling protein prolyl-4-hydroxlase alpha 2 and the hypoxia inducible factor 1α. DCIS co-existing with invasive carcinoma had a higher collagen prognostic index than pure DCIS (

    Collagen (XI) alpha-1 chain (COL11A1) is an independent prognostic factor in breast ductal carcinoma in situ

    Get PDF
    Collagen11A1 (COL11A1) is a fibrillary type collagen constituting a minor component of the extracellular matrix and plays role in tissue tensile strength. Overexpression of COL11A1 expression is associated with aggressive behavior and poor outcome in several human malignancies. In this study, we evaluated the association between COL11A1 expression and clinicopathological parameters of the breast ductal carcinoma in situ (DCIS) and its prognostic value. COL11A1 protein expression was assessed immunohistochemically in a large well-characterized cohort of DCIS including pure (n = 776) and DCIS associated with invasive carcinoma (DCIS-mixed, n = 239). COL11A1 expression was assessed in tumor cells and surrounding stromal cells, and correlated with clinicopathological parameters, immunoprofile and disease outcome. In pure DCIS, high COL11A1 expression was observed in tumor cells and surrounding stromal cells in 25 and 13% of cases, respectively. Higher COL11A1 expression within the stromal cells was associated with hormone receptor negative, HER2 enriched and triple negative molecular subtypes and showed a positive linear correlation with proliferation index, dense tumor infiltrating lymphocytes and hypoxia-inducible factor 1 alpha. COL11A1 expression in tumor and stromal cells was significantly higher in DCIS associated with invasive carcinoma than in pure DCIS, and within the DCIS-mixed cohort, the invasive component showed higher COL11A1 expression than the DCIS component (all, p [less than] 0.0001). Overexpression of stromal COL11A1 was an independent predictor of shorter local recurrence-free interval for all recurrences (HR = 13.2, 95% CI = 6.9–25.4, p [less than] 0.0001) and for invasive recurrences (HR = 11.2, 95% CI = 4.9–25.8, p [les than] 0.0001). When incorporated with other risk factors, stromal COL11A1 provided better patient risk stratification. DCIS with higher stromal COL11A1 expression showed poor outcome even with adjuvant radiotherapy management. In conclusion, overexpression of stromal COL11A1 is associated with invasive recurrence in DCIS and is a potential marker to predict the response to radiotherapy

    Prognostic Role of Androgen Receptor in Triple Negative Breast Cancer: A Multi-Institutional Study

    Get PDF
    Background: Androgen Receptor (AR) has emerged as a potential therapeutic target for AR-positive triple-negative breast cancer (TNBC). However, conflicting reports regarding AR’s prognostic role in TNBC are putting its usefulness in question. Some studies conclude that AR positivity indicates a good prognosis in TNBC whereas others suggest the opposite, and some show that AR status has no significant bearing on the patients’ prognosis. Methods: We evaluated the prognostic value of AR in resected primary tumors from TNBC patients from six international cohorts {US (n=420), UK (n=239), Norway (n=104), Ireland (n=222), Nigeria (n=180), and India (n=242); total n=1407}. All TNBC samples were stained with the same anti-AR antibody using the same immunohistochemistry protocol, and samples with ≥1% of AR-positive nuclei were deemed AR-positive TNBCs. Results: AR status shows population-specific patterns of association with patients’ overall survival after controlling for age, grade, population, and chemotherapy. We found AR-positive status to be a marker of good prognosis in US and Nigerian cohorts, a marker of poor prognosis in Norway, Ireland and Indian cohorts, and neutral in UK cohort. Conclusion: AR status, on its own, is not a reliable prognostic marker. More research to investigate molecular subtype composition among the different cohorts is warranted
    corecore