89 research outputs found

    Fabrication of Omniphobic‐Omniphilic Micropatterns using GPOSS‐PDMS Coating

    Get PDF
    Surfaces with special wettability properties, such as omniphobicity or omniphilicity, are essential for functional devices that use both aqueous and organic media. Micropatterning of omniphobic and omniphilic properties can provide a wide range of applications, including miniaturized experiments using both aqueous and organic media. Herein, an approach for creating omniphobic-omniphilic micropatterns based on selective photoacid polymerization of octa(3-glycidyloxypropyl) polyhedral oligomeric silsesquioxane modified with mono-aminopropyl-terminated polydimethylsiloxane is reported. The composition of the polymeric coatings using infrared spectroscopy; patterning accuracy using atomic force microscopy and scanning electron microscopy; wettability characteristics of the omniphobic, and omniphilic surfaces using contact angle measurements are studied. The proposed approach allows for single-step micropatterning (sub-10 µm) or macropatterning (3 mm). Liquids with surface tensions >22.8 mN m−1 can be confined to the omniphilic areas by the omniphobic borders. C2C12 cells are successfully cultivated in omniphilic areas, demonstrating their cell compatibility. The cells adhere to and grow on the entire surface of the pattern, without any signs of cytotoxicity. However, the strongest adhesion is observed in the omniphilic areas, making it possible to create cell micropatterns in a single step. The proposed method for the fabrication of omniphobic-omniphilic transparent, mechanically robust, biocompatible patterns can find applications in microfluidics, biotechnology or miniaturized biological screening experiments

    Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap

    Full text link
    We study the rotational properties of an attractively interacting Bose gas in a quadratic + quartic potential. The low-lying modes of both rotational ground state configurations, namely the vortex and the center of mass rotating states, are solved. The vortex excitation spectrum is positive for weak interactions but the lowest modes decrease rapidly to negative values when the interactions become stronger. The broken rotational symmetry involved in the center of mass rotating state induces the appearance of an extra zero-energy mode in the Bogoliubov spectrum. The excitations of the center of mass rotational state also demonstrate the coupling between the center of mass and relative motions.Comment: 4 pages, 3 eps figures (2 in color) v2: changes in Title, all figures, in text (especially in Sec III) and in Reference

    Performance of the SAET of the Stavropol Anti-Plague Institute of the Rospotrebnadzor during the XXII Olympic and XI Paralympic Winter Games in Sochi

    Get PDF
    Given is a general overview of the SAET performance during the XXII Olympic and XI Paralympic Winter Games, 2014 in Sochi. Discussed are the peculiarities of work management of the SAET diagnostic facilities; represented are the data on the structure and scope of laboratory investigations of clinical material and environmental samples. Analyzed is the experience of operation under major international mass event. Consequently, it is concluded that current SAET structure, its stuffing and equipping, the laid-up stock of preparations and test-systems have allowed for coping with a diverse task complex in the laboratory diagnostics of infectious diseases and indication of their agents

    The methylation of 1,2,3-thiadiazole-4-carbothioamides

    No full text
    corecore