1,291 research outputs found

    Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation

    Get PDF
    Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge

    Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    Full text link
    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar, and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyrs, the time that it takes for the disk to be re-centered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the HI center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.Comment: 12 pages, 8 figures, corrected for referee comment

    Fostering IPv6 Migration Through Network Quality Differentials

    Get PDF
    Although IPv6 has been the next generation Internet protocol for nearly 15 years, new evidences indicate that transitioning from IPv4 to IPv6 is about to become a more pressing issue. This paper attempts to quantify if and how such a transition may unfold. The focus is on ``connectivity quality,\u27\u27 e.g., as measured by users\u27 experience when accessing content, as a possible incentive (or disincentive) for migrating to IPv6, and on ``translation costs\u27\u27 (between IPv6 and IPv4) that Internet Service Providers will incur during this transition. The paper develops a simple model that captures some of the underlying interactions, and highlights the ambiguous role of translation gateways that can either help or discourage IPv6 adoption. The paper is an initial foray in the complex and often puzzling issue of migrating the current Internet to a new version with which it is incompatible

    Entropy measures for complex networks: Toward an information theory of complex topologies

    Full text link
    The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this paper we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of networks through maximum-entropy arguments and will contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure

    Coupling Transcriptional State to Large-Scale Repeat Expansions in Yeast

    Get PDF
    SummaryExpansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich’s ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions

    Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides

    Get PDF
    Fiber taper waveguides are used to improve the efficiency of room temperature photoluminescence measurements of AlGaAs microdisk resonant cavities with embedded self-assembled InAs quantum dots. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers by a factor of ~ 15-100 times in comparison to conventional normal incidence free-space collection techniques. In addition, the fiber taper can serve as a efficient means for pumping these devices, and initial measurements employing fiber pumping and collection are presented. Implications of this work towards chip-based cavity quantum electrodynamics experiments are discussed.Comment: 10 pages, 7 figure
    corecore