17 research outputs found

    Self-Tuning Network Control Architectures with Joint Sensor and Actuator Selection

    Full text link
    We formulate a mathematical framework for designing a self-tuning network control architecture, and propose a computationally-feasible greedy algorithm for online architecture optimization. In this setting, the locations of active sensors and actuators in the network, as well as the feedback control policy are jointly adapted using all available information about the network states and dynamics to optimize a performance criterion. We show that the case with full-state feedback can be solved with dynamic programming, and in the linear-quadratic setting, the optimal cost functions and policies are piecewise quadratic and piecewise linear, respectively. Our framework is extended for joint sensor and actuator selection for dynamic output feedback control with both control performance and architecture costs. For large networks where exhaustive architecture search is prohibitive, we describe a greedy heuristic for actuator selection and propose a greedy swapping algorithm for joint sensor and actuator selection. Via numerical experiments, we demonstrate a dramatic performance improvement of greedy self-tuning architectures over fixed architectures. Our general formulation provides an extremely rich and challenging problem space with opportunities to apply a wide variety of approximation methods from stochastic control, system identification, reinforcement learning, and static architecture design for practical model-based control.Comment: 12 pages, submitted to IEEE-TCNS. arXiv admin note: text overlap with arXiv:2301.0669

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    An unusual presentation of obstructive sleep apnoeas

    No full text
    We report the case of a 69-year-old married man who presented with features of irritability, characterised by outbursts of anger, short-term memory deficits and clumsiness, which progressed over a period of some 20 years. A detailed review elicited motor and verbal agitation during sleep, a history that was only available from his wife. He had excessive daytime sleepiness. A parasomnia in association with his possible neurological disorder was suspected and a referral made to the sleep disorders clinic. Further investigation with polysomnography determined that the abnormal behaviours during the night were secondary to arousals caused by obstructive sleep apnoea. Treatment with continuous positive airways pressure therapy prevented the abnormal behaviours at night, improved his daytime sleepiness but also led to improvements in his clumsiness, short-term memory and temper, all corroborated by his wife

    Self-Tuning Network Control Architectures

    No full text
    We formulate a general mathematical framework for self-tuning network control architecture design. This problem involves jointly adapting the locations of active sensors and actuators in the network and the feedback control policy to all available information about the time-varying network state and dynamics to optimize a performance criterion. We propose a general solution structure analogous to the classical self-tuning regulator from adaptive control. We show that a special case with full-state feedback can be solved in principle with dynamic programming, and in the linear quadratic setting the optimal cost functions and policies are piecewise quadratic and piecewise linear, respectively. For large networks where exhaustive architecture search is prohibitive, we describe a greedy heuristic for joint architecture-policy design. We demonstrate in numerical experiments that self-tuning architectures can provide dramatically improved performance over fixed architectures. Our general formulation provides an extremely rich and challenging problem space with opportunities to apply a wide variety of approximation methods from stochastic control, system identification, reinforcement learning, and static architecture design

    Next Generation Sequencing for the Detection of Actionable Mutations in Solid and Liquid Tumors

    No full text
    As our understanding of the driver mutations necessary for initiation and progression of cancers improves, we gain critical information on how specific molecular profiles of a tumor may predict responsiveness to therapeutic agents or provide knowledge about prognosis. At our institution a tumor genotyping program was established as part of routine clinical care, screening both hematologic and solid tumors for a wide spectrum of mutations using two next-generation sequencing (NGS) panels: a custom, 33 gene hematological malignancies panel for use with peripheral blood and bone marrow, and a commercially produced solid tumor panel for use with formalin-fixed paraffin-embedded tissue that targets 47 genes commonly mutated in cancer. Our workflow includes a pathologist review of the biopsy to ensure there is adequate amount of tumor for the assay followed by customized DNA extraction is performed on the specimen. Quality control of the specimen includes steps for quantity, quality and integrity and only after the extracted DNA passes these metrics an amplicon library is generated and sequenced. The resulting data is analyzed through an in-house bioinformatics pipeline and the variants are reviewed and interpreted for pathogenicity. Here we provide a snapshot of the utility of each panel using two clinical cases to provide insight into how a well-designed NGS workflow can contribute to optimizing clinical outcomes
    corecore