191 research outputs found

    Biologically inspired computational structures and processes for autonomous agents and robots

    Get PDF
    Recent years have seen a proliferation of intelligent agent applications: from robots for space exploration to software agents for information filtering and electronic commerce on the Internet. Although the scope of these agent applications have blossomed tremendously since the advent of compact, affordable computing (and the recent emergence of the World Wide Web), the design of such agents for specific applications remains a daunting engineering problem;Rather than approach the design of artificial agents from a purely engineering standpoint, this dissertation views animals as biological agents, and considers artificial analogs of biological structures and processes in the design of effective agent behaviors. In particular, it explores behaviors generated by artificial neural structures appropriately shaped by the processes of evolution and spatial learning;The first part of this dissertation deals with the evolution of artificial neural controllers for a box-pushing robot task. We show that evolution discovers high fitness structures using little domain-specific knowledge, even in feedback-impoverished environments. Through a careful analysis of the evolved designs we also show how evolution exploits the environmental constraints and properties to produce designs of superior adaptive value. By modifying the task constraints in controlled ways, we also show the ability of evolution to quickly adapt to these changes and exploit them to obtain significant performance gains. We also use evolution to design the sensory systems of the box-pushing robots, particularly the number, placement, and ranges of their sensors. We find that evolution automatically discards unnecessary sensors retaining only the ones that appear to significantly affect the performance of the robot. This optimization of design across multiple dimensions (performance, number of sensors, size of neural controller, etc.) is implicitly achieved by the evolutionary algorithm without any external pressure (e.g., penalty on the use of more sensors or neurocontroller units). When used in the design of robots with limited battery capacities , evolution produces energy-efficient robot designs that use minimal numbers of components and yet perform reasonably well. The performance as well as the complexity of robot designs increase when the robots have access to a spatial learning mechanism that allows them to learn, remember, and navigate to power sources in the environment;The second part of this dissertation develops a computational characterization of the hippocampal formation which is known to play a significant role in animal spatial learning. The model is based on neuroscientific and behavioral data, and learns place maps based on interactions of sensory and dead-reckoning information streams. Using an estimation mechanism known as Kalman filtering, the model explicitly deals with uncertainties in the two information streams, allowing the robot to effectively learn and localize even in the presence sensing and motion errors. Additionally, the model has mechanisms to handle perceptual aliasing problems (where multiple places in the environment appear sensorily identical), incrementally learn and integrate local place maps, and learn and remember multiple goal locations in the environment. We show a number of properties of this spatial learning model including computational replication of several behavioral experiments performed with rodents. Not only does this model make significant contributions to robot localization, but also offers a number of predictions and suggestions that can be validated (or refuted) through systematic neurobiological and behavioral experiments with animals

    Intelligent Diagnosis Systems

    Get PDF
    This paper examines and compares several different approaches to design of intelligent systems for diagnosis applications. These include expert systems (or knowledge based systems), truth (or reason) maintenance systems, case based reasoning systems, and inductive approaches like decision trees, neural networks (or connectionist systems), and statistical pattern classification systems. Each of these approaches is demonstrated through the design of a system for a simple automobile fault diagnosis task. The paper also discusses the domain characteristics that influence the choice of a specific technique (or combination of techniques) for a given application

    Evolutionary Design of Neural Architectures -- A Preliminary Taxonomy and Guide to Literature

    Get PDF
    This report briefly motivates current research on evolutionary design of neural architectures (EDNA) and presents a short overview of major research issues in this area. It also includes a preliminary taxonomy of research on EDNA and an extensive bibliography of publications on this topic. The taxonomy is an attempt to categorize current research on EDNA in terms of major research issues addressed and approaches pursued. It is our hope that this will help identify open research questions as well as promising directions for further research on EDNA. The report also includes an appendix that provides some suggestions for effective use of the electronic version of the bibliography

    Spatial Learning for Robot Locialization

    Get PDF
    Although evolutionary algorithms have been employed to automatically synthesize control and behavior programs for robots and even design the physical structures of the robots, it is impossible for evolution to anticipate the detailed structure of specific environments that the robot might have to deal with. Robots must thus possess mechanisms to learn and adapt to the environments they encounter. One such mechanism that is of importance to mobile robots is that of spatial learning, i.e., the ability to learn the spatial locations of objects and places in the environment, which would allow them to successfully explore and navigate in a-priori unknown environments. This paper proposes a computational model for the acquisition and use of spatial information that is inspired by the role of the hippocampal formation in animal spatial learning and navigation

    Intelligent Diagnosis Systems

    Get PDF
    This paper examines and compares several different approaches to the design of intelligent systems for diagnosis applications. These include expert systems (or knowledge-based systems), truth (or reason) maintenance systems, case-based reasoning systems, and inductive approaches like decision trees, artificial neural networks (or connectionist systems), and statistical pattern classification systems. Each of these approaches is demonstrated through the design of a system for a simple automobile fault diagnosis task. The paper also discusses the domain characteristics and design and performance requirements that influence the choice of a specific technique (or a combination of techniques) for a given application

    Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

    Get PDF
    The ability to acquire a representation of spatial environment and the ability to localize within it are essential for successful navigation in a-priori unknown environments. The hippocampal formation is believed to play a key role in spatial learning and navigation in animals. This paper briefly reviews the relevant neurobiological and cognitive data and their relation to computational models of spatial learning and localization used in mobile robots. It also describes a hippocampal model of spatial learning and navigation and analyzes it using Kalman filter based tools for information fusion from multiple uncertain sources. The resulting model allows a robot to learn a place-based, metric representation of space in a-priori unknown environments and to localize itself in a stochastically optimal manner. The paper also describes an algorithmic implementation of the model and results of several experiments that demonstrate its capabilities

    A comparative analysis of models for predicting delays in air traffic networks

    Get PDF
    In this paper, we compare the performance of different approaches to predicting delays in air traffic networks. We consider three classes of models: A recently-developed aggregate model of the delay network dynamics, which we will refer to as the Markov Jump Linear System (MJLS), classical machine learning techniques like Classification and Regression Trees (CART), and three candidate Artificial Neural Network (ANN) architectures. We show that prediction performance can vary significantly depending on the choice of model/algorithm, and the type of prediction (for example, classification vs. regression). We also discuss the importance of selecting the right predictor variables, or features, in order to improve the performance of these algorithms. The models are evaluated using operational data from the National Airspace System (NAS) of the United States. The ANN is shown to be a good algorithm for the classification problem, where it attains an average accuracy of nearly 94% in predicting whether or not delays on the 100 most-delayed links will exceed 60 min, looking two hours into the future. The MJLS model, however, is better at predicting the actual delay levels on different links, and has a mean prediction error of 4.7 min for the regression problem, for a 2 hr horizon. MJLS is also better at predicting outbound delays at the 30 major airports, with a mean error of 6.8 min, for a 2 hr prediction horizon. The effect of temporal factors, and the spatial distribution of current delays, in predicting future delays are also compared. The MJLS model, which is specifically designed to capture aggregate air traffic dynamics, leverages on these factors and outperforms the ANN in predicting the future spatial distribution of delays. In this manner, a tradeoff between model simplicity and prediction accuracy is revealed. Keywords- delay prediction; network delays; machine learning; artificial neural networks; data miningNational Science Foundation (U.S.) ( Award 1239054

    Corporate Governance and the Information Environment: Evidence From State Antitakeover Laws

    Get PDF
    We examine the relation between corporate governance and firms\u27 information environments. We use the passage of state antitakeover laws in the U.S. as a source of exogenous variation in an important governance mechanism to identify changes in firms\u27 information environments. We find that information asymmetry and private information gathering decreased and that financial statement informativeness increased following the passage of the antitakeover laws. Cross-sectional analyses indicate that the increased level of financial statement informativeness is attributable to firms that are most likely to access equity markets rather than managerial entrenchment, managerial career concerns, or managers\u27 pursuit of the quiet life

    Post Loss/:Profit Announcement Drift

    Get PDF
    We document a market failure to fully respond to loss/profit quarterly announcements. The annualized post portfolio formation return spread between two portfolios formed on extreme losses and extreme profits is approximately 21 percent. This loss/profit anomaly is incremental to previously documented accounting-related anomalies, and is robust to alternative risk adjustments, distress risk, firm size, short sales constraints, transaction costs, and sample periods. In an effort to explain this finding, we show that this mispricing is related to differences between conditional and unconditional probabilities of losses/profits, as if stock prices do not fully reflect conditional probabilities in a timely fashion
    corecore