356 research outputs found
Three-Dimensional Elastic Compatibility: Twinning in Martensites
We show how the St.Venant compatibility relations for strain in three
dimensions lead to twinning for the cubic to tetragonal transition in
martensitic materials within a Ginzburg-Landau model in terms of the six
components of the symmetric strain tensor. The compatibility constraints
generate an anisotropic long-range interaction in the order parameter
(deviatoric strain) components. In contrast to two dimensions, the free energy
is characterized by a "landscape" of competing metastable states. We find a
variety of textures, which result from the elastic frustration due to the
effects of compatibility. Our results are also applicable to structural phase
transitions in improper ferroelastics such as ferroelectrics and
magnetoelastics, where strain acts as a secondary order parameter
Droplet Fluctuations in the Morphology and Kinetics of Martensites
We derive a coarse grained, free-energy functional which describes droplet
configurations arising on nucleation of a product crystal within a parent. This
involves a new `slow' vacancy mode that lives at the parent-product interface.
A mode-coupling theory suggests that a {\it slow} quench from the parent phase
produces an equilibrium product, while a {\it fast} quench produces a
metastable martensite. In two dimensions, the martensite nuclei grow as
`lens-shaped' strips having alternating twin domains, with well-defined front
velocities. Several empirically known structural and kinetic relations drop out
naturally from our theory.Comment: 4 pages, REVTEX, and 3 .eps figures, compressed and uuencoded,
Submitted to Phys. Rev. Let
Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains
We study a Ginzburg-Landau model of structural phase transition in two
dimensions, in which a single order parameter is coupled to the tetragonal and
dilational strains. Such elastic coupling terms in the free energy much affect
the phase transition behavior particularly near the tricriticality. A
characteristic feature is appearance of intermediate states, where the ordered
and disordered regions coexist on mesoscopic scales in nearly steady states in
a temperature window. The window width increases with increasing the strength
of the dilational coupling. It arises from freezing of phase ordering in
inhomogeneous strains. No impurity mechanism is involved. We present a simple
theory of the intermediate states to produce phase diagrams consistent with
simulation results.Comment: 16 pages, 14 figure
Disorder-Driven Pretransitional Tweed in Martensitic Transformations
Defying the conventional wisdom regarding first--order transitions, {\it
solid--solid displacive transformations} are often accompanied by pronounced
pretransitional phenomena. Generally, these phenomena are indicative of some
mesoscopic lattice deformation that ``anticipates'' the upcoming phase
transition. Among these precursive effects is the observation of the so-called
``tweed'' pattern in transmission electron microscopy in a wide variety of
materials. We have investigated the tweed deformation in a two dimensional
model system, and found that it arises because the compositional disorder
intrinsic to any alloy conspires with the natural geometric constraints of the
lattice to produce a frustrated, glassy phase. The predicted phase diagram and
glassy behavior have been verified by numerical simulations, and diffraction
patterns of simulated systems are found to compare well with experimental data.
Analytically comparing to alternative models of strain-disorder coupling, we
show that the present model best accounts for experimental observations.Comment: 43 pages in TeX, plus figures. Most figures supplied separately in
uuencoded format. Three other figures available via anonymous ftp
Nucleation in Systems with Elastic Forces
Systems with long-range interactions when quenced into a metastable state
near the pseudo-spinodal exhibit nucleation processes that are quite different
from the classical nucleation seen near the coexistence curve. In systems with
long-range elastic forces the description of the nucleation process can be
quite subtle due to the presence of bulk/interface elastic compatibility
constraints. We analyze the nucleation process in a simple 2d model with
elastic forces and show that the nucleation process generates critical droplets
with a different structure than the stable phase. This has implications for
nucleation in many crystal-crystal transitions and the structure of the final
state
Modelling avalanches in martensites
Solids subject to continuous changes of temperature or mechanical load often
exhibit discontinuous avalanche-like responses. For instance, avalanche
dynamics have been observed during plastic deformation, fracture, domain
switching in ferroic materials or martensitic transformations. The statistical
analysis of avalanches reveals a very complex scenario with a distinctive lack
of characteristic scales. Much effort has been devoted in the last decades to
understand the origin and ubiquity of scale-free behaviour in solids and many
other systems. This chapter reviews some efforts to understand the
characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and
Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final
publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-45612-6_
Simulations of cubic-tetragonal ferroelastics
We study domain patterns in cubic-tetragonal ferroelastics by solving
numerically equations of motion derived from a Landau model of the phase
transition, including dissipative stresses. Our system sizes, of up to 256^3
points, are large enough to reveal many structures observed experimentally.
Most patterns found at late stages in the relaxation are multiply banded; all
three tetragonal variants appear, but inequivalently. Two of the variants form
broad primary bands; the third intrudes into the others to form narrow
secondary bands with the hosts. On colliding with walls between the primary
variants, the third either terminates or forms a chevron. The multipy banded
patterns, with the two domain sizes, the chevrons and the terminations, are
seen in the microscopy of zirconia and other cubic-tetragonal ferroelastics. We
examine also transient structures obtained much earlier in the relaxation;
these show the above features and others also observed in experiment.Comment: 7 pages, 6 colour figures not embedded in text. Major revisions in
conten
The SLUGGS Survey: stellar kinematics, kinemetry and trends at large radii in 25 early-type galaxies
Due to longer dynamical time-scales, the outskirts of early-type galaxies retain the footprint of their formation and assembly. Under the popular two-phase galaxy formation scenario, an initial in situ phase of star formation is followed by minor merging and accretion of ex situ stars leading to the expectation of observable transitions in the kinematics and stellar populations on large scales. However, observing the faint galactic outskirts is challenging, often leaving the transition unexplored. The large-scale, spatially resolved stellar kinematic data from the SAGES Legacy Unifying Galaxies and GlobularS (SLUGGS) survey are ideal for detecting kinematic transitions. We present kinematic maps out to 2.6 effective radii on average, kinemetry profiles, measurement of kinematic twists and misalignments, and the average outer intrinsic shape of 25 SLUGGS galaxies. We find good overall agreement in the kinematic maps and kinemetry radial profiles with literature. We are able to confirm significant radial modulations in rotational versus pressure support of galaxies with radius so that the central and outer rotational properties may be quite different. We also test the suggestion that galaxies may be more triaxial in their outskirts and find that while fast rotating galaxies were already shown to be axisymmetric in their inner regions, we are unable to rule out triaxiality in their outskirts.We compare our derived outer kinematic information to model predictions from a two-phase galaxy formation scenario. We find that the theoretical range of local outer angular momentum agrees well with our observations, but that radial modulations are much smaller than predicted
Technical summary
The Working Group III (WGIII) contribution to the IPCC's Fifth Assessment Report (AR5) assesses literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change. It builds upon the WGIII contribution to the IPCC's Fourth Assessment Report (AR4), the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) and previous reports and incorporates subsequent new findings and research. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. In light of the IPCC's mandate, authors in WGIII were guided by several principles when assembling this assessment: (1) to be explicit about mitigation options, (2) to be explicit about their costs and about their risks and opportunities vis-a-vis other development priorities, (3) and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.
This summary offers the main findings of the report
Restoration of Altered MicroRNA Expression in the Ischemic Heart with Resveratrol
Resveratrol, a constituent of red wine, is important for cardioprotection. MicroRNAs are known regulators for genes involved in resveratrol-mediated cardiac remodeling and the regulatory pathway involving microRNA has not been studied so far.We explored the cardioprotection by resveratrol in ischemia/reperfusion model of rat and determined cardiac functions. miRNA profile was determined from isolated RNA using quantitative Real-time PCR based array. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.Cardioprotection by resveratrol and its derivative in ischemia/reperfusion [I/R] rat model was examined with miRNA expression profile. Unique expression pattern were found for each sample, particularly with resveratrol [pure compound] and longevinex [commercial resveratrol formulation] pretreated hearts. Longevinex and resveratrol pretreatment modulates the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 25 miRNAs, some of them, such as miR-21 were previously implicated in cardiac remodeling. The target genes for the differentially expressed miRNA include genes of various molecular function such as metal ion binding, sodium-potassium ion, transcription factors, which may play key role in reducing I/R injury.Rats pretreated with resveratrol for 3 weeks leads to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or longevinex. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R mice
- …