43 research outputs found

    A concentration phenomenon for semilinear elliptic equations

    Full text link
    For a domain \Omega\subset\dR^N we consider the equation -\Delta u + V(x)u = Q_n(x)\abs{u}^{p-2}u with zero Dirichlet boundary conditions and p(2,2)p\in(2,2^*). Here V0V\ge 0 and QnQ_n are bounded functions that are positive in a region contained in Ω\Omega and negative outside, and such that the sets {Qn>0}\{Q_n>0\} shrink to a point x0Ωx_0\in\Omega as nn\to\infty. We show that if unu_n is a nontrivial solution corresponding to QnQ_n, then the sequence (un)(u_n) concentrates at x0x_0 with respect to the H1H^1 and certain LqL^q-norms. We also show that if the sets {Qn>0}\{Q_n>0\} shrink to two points and unu_n are ground state solutions, then they concentrate at one of these points

    СЛУЧАЙ УСПЕШНОГО ПРИМЕНЕНИЯ ФОТОДИНАМИЧЕСКОЙТЕРАПИИ в ЛЕЧЕНИИ ПРОЯВЛЕНИЙ САРКОМЫ КАПОШИна ПОЛОВОМ ЧЛЕНЕ

    Get PDF
    The article describes a case of successful application of the photodynamic therapy for treatment of the classic type of Kaposis sarcoma in the area of the glans of a 60-year-old patient.Представлено описание случая успешного использования фотодинамической терапии в лечении классического типа саркомы Капоши в области головки полового члена у пациента 60 лет

    The reflection of very cold neutrons from diamond powder nanoparticles

    Full text link
    We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to 10410^{-4} eV

    Scattering of dipole-mode vector solitons: Theory and experiment

    Full text link
    We study, both theoretically and experimentally, the scattering properties of optical dipole-mode vector solitons - radially asymmetric composite self-trapped optical beams. First, we analyze the soliton collisions in an isotropic two-component model with a saturable nonlinearity and demonstrate that in many cases the scattering dynamics of the dipole-mode solitons allows us to classify them as ``molecules of light'' - extremely robust spatially localized objects which survive a wide range of interactions and display many properties of composite states with a rotational degree of freedom. Next, we study the composite solitons in an anisotropic nonlinear model that describes photorefractive nonlinearities, and also present a number of experimental verifications of our analysis.Comment: 8 pages + 4 pages of figure

    Safe Reinforcement Learning in Simulated Environment of Self-Driving Laboratory

    No full text
    Today we see tremendous potential in applying artificial intelligence (AI), deep reinforcement learning, and agent-based simulation to complex real-world problems. AI helps people support and automate decision-making penetrating almost all daily life aspects and research areas. One of the reasons for this potential is that AI helps us solve problems at a lower cost of resources and time. Materials research acceleration often relies upon AI using and automation of laboratory experiments, bringing significant fruitful results and advances. Self-driving laboratories include closed-loop chemistry experimentation and assist in designing new functional nanomaterials and optimizing their known parameters with AI and machine learning approaches. Due to the possibility of involving in the nanomaterials design process and some hazardous components, routine experimentation under chemists' continuous monitoring is usually required. Shifting to new intelligent technologies in self-driving laboratories with automated closed-loop experimentation requires excluding risks and accidents because of improper AI applications. This paper discusses safe deep reinforcement learning and its application in a simulated environment in self-driving laboratories experimenting with new functional materials. We proposed an approach to solving the problem of safe reinforcement learning by learning the intelligent agent to find a hidden reward and implemented that approach by constructing and using the heatmap from observation of the hidden reward neighborhood. © 2021 ACM

    Integrated Video and Acoustic Emission Data Fusion for Intelligent Decision Making in Material Surface Inspection System

    No full text
    In the field of intelligent surface inspection systems, particular attention is paid to decision making problems, based on data from different sensors. The combination of such data helps to make an intelligent decision. In this research, an approach to intelligent decision making based on a data integration strategy to raise awareness of a controlled object is used. In the following article, this approach is considered in the context of reasonable decisions when detecting defects on the surface of welds that arise after the metal pipe welding processes. The main data types were RGB, RGB-D images, and acoustic emission signals. The fusion of such multimodality data, which mimics the eyes and ears of an experienced person through computer vision and digital signal processing, provides more concrete and meaningful information for intelligent decision making. The main results of this study include an overview of the architecture of the system with a detailed description of its parts, methods for acquiring data from various sensors, pseudocodes for data processing algorithms, and an approach to data fusion meant to improve the efficiency of decision making in detecting defects on the surface of various materials. © 2022 by the authors

    Histidine-Mediated Nickel and Zinc Translocation in Intact Plants of the Hyperaccumulator Noccaea caerulescens

    No full text
    In this work, the effect of exogenous histidine supply on zinc (Zn) and nickel (Ni) translocation to the shoots in intact plants of the hyperaccumulator Noccaea caerulescens F.K. Mey was studied. Three series of experiments were carried out. (1) Intact N. caerulescens plants (St-Félix-de-Pallières population) were pretreated for 4 h (12:00 till 16:00) with a MES/KOH-buffered 1 mM L-histidine solution or demineralized water, then exposed overnight (20 h) to 5, 25 or 250 µM Ni or Zn and harvested. (2) Intact N. caerulescens plants of the same population were pretreated with 1 mM L-histidine solution or demineralized water overnight (20 h) and then exposed to 250 µM Ni or Zn for 8 h during the day (10:00 till 18:00) and harvested. (3) Intact N. caerulescens plants (the calamine populations St-Félix-de-Pallières (SF) and La Calamine (LC), and the ultramafic population Monte Prinzera (MP)) were exposed for 8 h (10:00 till 18:00) to 250 µM Ni or Zn and then to 1 mM L-histidine solution or demineralized water overnight (20 h) and harvested. The Ni and Zn concentrations in the roots and shoots were determined by atomic absorption spectrophotometry. The translocation factor (TF), expressed as the shoot to root metal concentration ratio, the total plant Ni or Zn content, and the percentage of the total Ni or Zn content present in the shoot (% translocated) were calculated. A 4 h pretreatment with L-histidine during the afternoon (before metal exposure overnight) significantly decreased the Ni and Zn concentrations in the root and increased the concentration of Ni, but not of Zn, in the shoot, significantly increased both TF and the % translocated for both metals, albeit much more strongly for Ni, and also slightly, but significantly, increased the total plant content of Ni, but not of Zn. Overnight pretreatment with L-histidine (followed by metal exposure during the day) of the same population (SF) had basically similar effects on Ni translocation, but significantly decreased the plant total Ni content, and was without significant effects on Zn translocation, but considerably decreased the root Zn concentration. The different populations under study (SF, MP, LC) showed significant differences in their Ni and Zn uptake and translocation capacities, but in general showed qualitatively similar responses to post-treatment with L‑histidine that strongly increased the TF and the % translocated for both metals in SF and MP, whereas in LC the effect was prominent only for Ni. Significant population × histidine treatment effect interactions were obtained for the root Zn concentration, and the TF and % translocated for Ni, which were largely explained by a relatively low responsiveness to the L-histidine treatment in LC, compared to SF and/or MP. It is concluded that the high endogenous L-histidine concentrations in N. caerulescens are probably functional in the hyperaccumulation of both Ni and Zn. The overall stronger effect of exogenous L-histidine supply on the translocation of Ni, compared to Zn, seems to result, at least in part, from the high Zn burdens at the start of the treatments, particularly in the shoots, which largely mask the apparent effects of exogenous L-histidine supply on the shoot Zn concentration and, to a lower degree, the % Zn translocated

    Functioning of defense systems in halophytes and glycophytes under progressing salinity

    No full text
    Six-week-old Plantago major L. and Thellungiella halophila Mey. plants were subjected to progressing salinity by a daily increase in the NaCl concentration by 100 mM until the final concentration of 400 mM. A dynamics of stress-dependent accumulation of Na+ and Cl- ions, proline, and free polyamines and also activities of antioxidant enzymes, superoxide oxidase (SOD) and free, ion-bound, and covalently bound guaiacol-dependent peroxidases was studied. We also examined the intensity of gene expression encoding enzymes of proline metabolism and polyamine biosynthesis. It was shown that the high salt-resistance of the halophyte T. halophila was determined by plant capability of ion accumulation and stress-dependent proline accumulation. An important role in the maintenance of this plant homeostasis under salinity plays a high constitutive levels of activities of three types of peroxidases tested and also of proline manifesting a polyfunctional protective action. In contrast, P. major plants characterized by a lower tolerance to salt excess did not display a high constitutive level of proline or the activity of guaiacol-dependent peroxidases; they also were not capable of stress-induced accumulation of compatible osmolytes and did not accumulate the salt. However, this glycophyte contained relatively much spermidine and active SOD, which provided for a decrease in the damaging effects of reactive oxygen species under salt shock. In both plant species, it was established that salinity changed the intracellular content of polyamines, which was not dependent on the activity of gene transcription encoding the enzymes of their biosynthesis. The results obtained support a hypothesis that halophytes and glycophytes have some common mechanisms of tolerance to salinity, but the control of these mechanisms differs substantially. © 2007 Pleiades Publishing, Ltd
    corecore