8 research outputs found

    Molecular Characterization of Novel Mycoviruses in Seven Umbelopsis Strains

    Get PDF
    The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or-2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization

    Molecular Characterization of Novel Mycoviruses in Seven Umbelopsis Strains

    Get PDF
    The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or-2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization

    Phytol may inspire new medicinal foods for the treatment of heart disease

    Get PDF
    This study aimed to investigate in vitro antibacterial activity of phytol against the selected Gram positive bacteria (Clostridium sporogenes, Enterococcus faecalis and Sarcina lutea) involved in the pathogenesis of infective endocarditis. The examined natural product has proved to be active against all the tested bacteria, but to a varying degree. Indeed, phytol inhibited E. faecalis growth (MIC 1.56 ± 0.04 μg/mL) more effectively than gentamycin and ampicillin (MIC 5.00 ± 0.06 and 16.00 ± 0.03 μg/mL, respectively). Both its freely presence in nutrition and easy availability support the development of a new phytol based medicinal foods targeting heart disease

    Molecular Characterization of Novel Mycoviruses in Seven Umbelopsis Strains

    No full text
    The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or −2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization
    corecore