15 research outputs found

    Extent of Pseudocapacitance in High‐Surface Area Vanadium Nitrides

    Full text link
    Early transition‐metal nitrides, especially vanadium nitride (VN), have shown promise for use in high energy density supercapacitors due to their high electronic conductivity, areal specific capacitance, and ability to be synthesized in high surface area form. Their further development would benefit from an understanding of their pseudocapacitive charge storage mechanism. In this paper, the extent of pseudocapacitance exhibited by vanadium nitride in aqueous electrolytes was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The pseudocapacitance contribution to the total capacitance in the nitride material was much higher than the double‐layer capacitance and ranged from 85 % in basic electrolyte to 87 % in acidic electrolyte. The mole of electrons transferred per VN material during pseudocapacitive charge storage was also evaluated. This pseudocapacitive charge‐storage is the key component in the full utilization of the properties of early‐transition metal nitrides for high‐energy density supercapacitors.Double‐layer capacitance vs. pseudocapacitance: the electrostatic double‐layer and pseudocapacitive charge storage mechanisms in high‐surface‐area vanadium nitride are investigated. The magnitude of the pseudocapacitive charge storage capacity and mole of electrons transferred are reported. The pseudocapacitive charge‐storage mechanism is the key component in maximizing the energy density of supercapacitors based on transition‐metal nitrides.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/1/batt201800050.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/2/batt201800050_am.pd

    Titanium dioxide nanotube films for electrochemical supercapacitors: biocompatibility and operation in an electrolyte based on a physiological fluid

    No full text
    Growing interest in developing devices that can be implantable or wearable requires the identification of suitable materials for the components of these devices. Electrochemical supercapacitors are not the exception in this trend, and identifying electrode materials that can be not only suitable for the capacitive device but also biocompatible at the same time is important. In addition, it would be advantageous if physiological fluids could be used instead of more conventional (and often corrosive) electrolytes for implantable or wearable supercapacitors. In this study, we assess the biocompatibility of films of anodized TiO2 nanotubes subjected to the subsequent annealing in Ar atmosphere and evaluate their capacitive performance in a physiological liquid. A biocompatibility test tracking cell proliferation on TiO2 nanotube electrodes and electrochemical tests in 0.01 M phosphate-buffered saline solution are discussed. It is expected that the study will stimulate further developments in this area

    Evolution of the electrochemical capacitance of transition metal oxynitrides with time: the effect of ageing and passivation

    Full text link
    A number of transition metal nitrides and oxynitrides, which are actively investigated today as electrode materials in a wide range of energy conversion and storage devices, possess an oxide layer on the surface. Upon exposure to ambient air, properties of this layer progressively change in the process known as "ageing". Since a number of electrochemical processes involve the surface or sub-surface layers of the active electrode compounds only, ageing could have a significant effect on the overall performance of energy conversion and storage devices. In this work, the influence of the ageing of tungsten and molybdenum oxynitrides on their electrochemical properties in supercapacitors is explored for the first time. Samples are synthesised by the temperature-programmed reduction in NH3 and are treated with different gases prior to exposure to air in order to evaluate the role of passivation in the ageing process. After the synthesis, products are subjected to controlled ageing and are characterised by low temperature nitrogen adsorption, X-ray photoelectron spectroscopy and transmission electron microscopy. Capacitive properties of the compounds are evaluated by performing cyclic voltammetry and galvanostatic charge and discharge measurements in the 1 M H2SO4 electrolyte. © 2014 the Partner Organisations
    corecore