111 research outputs found

    ASE, GPAW, CMR, and that kind of tools

    Get PDF
    During the last decades we have developed several, mostly Python-based, tools for setting up, controlling/steering, storing, analyzing, and sharing simulations at the atomic and electronic scale. In particular, we have developed the Atomic Simulation Environment which has become a fairly widely used scripting tool for setting up and controlling simulations with either an interatomic potential code or an electronic structure code as “backends” for the force and energy calculations. More recently, we have developed a real-space density-functional-theory and many-body-perturbation-theory code, GPAW, and most recently the Computational Materials Repository for storing, sharing, and retrieving atomic-scale data. In the discussion, I shall present some of the experiences we have gained through these developments and show some examples of their recent to the problem of finding new materials for efficient solar energy conversion into electricity or fuels

    Simulation of Cu-Mg metallic glass: Thermodynamics and Structure

    Get PDF
    We have obtained effective medium theory (EMT) interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact the splitting temperature for the Cu-Cu RDF is well above TgT_g. The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific heat jump of around 1.5kB/at.1.5 k_B/\mathrm{at.} indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates.Comment: 12 pages (revtex, two-column), 12 figures, submitted to Phys. Rev.

    Spatially resolved quantum plasmon modes in metallic nano-films from first principles

    Get PDF
    Electron energy loss spectroscopy (EELS) can be used to probe plasmon excitations in nanostructured materials with atomic-scale spatial resolution. For structures smaller than a few nanometers quantum effects are expected to be important, limiting the validity of widely used semi-classical response models. Here we present a method to identify and compute spatially resolved plasmon modes from first principles based on a spectral analysis of the dynamical dielectric function. As an example we calculate the plasmon modes of 0.5-4 nm thick Na films and find that they can be classified as (conventional) surface modes, sub-surface modes, and a discrete set of bulk modes resembling standing waves across the film. We find clear effects of both quantum confinement and non-local response. The quantum plasmon modes provide an intuitive picture of collective excitations of confined electron systems and offer a clear interpretation of spatially resolved EELS spectra.Comment: 7 pages, 7 figure

    Plasmons on the edge of MoS2 nanostructures

    Get PDF
    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles

    A local Bayesian optimizer for atomic structures

    Full text link
    A local optimization method based on Bayesian Gaussian Processes is developed and applied to atomic structures. The method is applied to a variety of systems including molecules, clusters, bulk materials, and molecules at surfaces. The approach is seen to compare favorably to standard optimization algorithms like conjugate gradient or BFGS in all cases. The method relies on prediction of surrogate potential energy surfaces, which are fast to optimize, and which are gradually improved as the calculation proceeds. The method includes a few hyperparameters, the optimization of which may lead to further improvements of the computational speed.Comment: 10 pages, 5 figure

    Linear density response function in the projector-augmented wave method: Applications to solids, surfaces, and interfaces

    Full text link
    We present an implementation of the linear density response function within the projector-augmented wave (PAW) method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single-particle eigenstates can be expanded on a real space grid or in atomic orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric functions of Si, C, SiC, AlP and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of the Mg(0001) surface with plasmon energies deviating by less than 0.2 eV. Finally, we apply the method to study the influence of substrates on the plasmon excitations in graphene. On SiC(0001), the long wavelength π\pi plasmons are significantly damped although their energies remain almost unaltered. On Al(111) the π\pi plasmon is completely quenched due to the coupling to the metal surface plasmon.Comment: 11 pages, 8 figures, articl

    Unraveling the acoustic electron-phonon interaction in graphene

    Get PDF
    Using a first-principles approach we calculate the acoustic electron-phonon couplings in graphene for the transverse (TA) and longitudinal (LA) acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first-principles based matrix elements even at shorter wavelengths. Using the analytic forms of the coupling matrix elements, we study the acoustic phonon-limited carrier mobility for temperatures 0-200 K and high carrier densities of 10^{12}-10^{13} cm^{-2}. We find that the intrinsic effective acoustic deformation potential of graphene is \Xi_eff = 6.8 eV and that the temperature dependence of the mobility \mu ~ T^{-\alpha} increases beyond an \alpha = 4 dependence even in the absence of screening when the full coupling matrix elements are considered. The large disagreement between our calculated deformation potential and those extracted from experimental measurements (18-29 eV) indicates that additional or modified acoustic phonon-scattering mechanisms are at play in experimental situations.Comment: 7 pages, 3 figure

    Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    Get PDF
    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s−ds-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation and an orbital dependent exchange-correlation (xc) potential that improves the position and width of the dd bands. The plasmon dispersions calculated with the latter xc-potential agree well with electron energy loss spectroscopy (EELS) experiments. For both the CSP and ASP, the same trend of Cu<<Au<<Ag is found for the plasmon energies and is attributed to the reduced screening by interband transitions from Cu, to Au and Ag. This trend for the ASP, however, contradicts a previous model prediction. While the ASP is seen as a weak feature in the EELS, it can be clearly identified in the static and dynamic dielectric band structure.Comment: 5 pages, 4 figure
    • …
    corecore