Engineering Conferences International ECI Digital Archives

Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools

Proceedings

Fall 10-1-2012

Atomis'c Materials Design Using the Computa'onal Materials Repository

Karsten W. Jacobsen Technical University of Denmark

Follow this and additional works at: http://dc.engconfintl.org/materials_genome Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Karsten W. Jacobsen, "Atomis'c Materials Design Using the Computa'onal Materials Repository" in "Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools", J.-C. Zhao, The Ohio State Univ.; M. Asta, Univ. of California Berkeley; Peter Gumbsch Institutsleiter Fraunhofer-Institut fuer Werkstoffmechanik IWM; B. Huang, Central South University Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/materials_genome/3

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Harnessing The Materials Genome: Accelerated Materials Development via Computational and Experimental Tools by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Atomistic Materials Design Using the Computational Materials Repository

Karsten W. Jacobsen Center for Atomic-scale Materials Design Dept. of Physics Technical University of Denmark

Outline

- Computational Materials Repository
- Perovskites for water splitting
- New optimized exchange-correlation density functionals

Computational Materials Repository

- A system for storing/uploading, analyzing, retrieving, and sharing computational data.
- Some ideas:
 - Many interfaces (sql, python, web, "silo")
 - Agents small pieces of code automatically performing calculations in the database
 - Taxonomy/folksonomy
 - Data identification publication
- Software at <u>http://wiki.fysik.dtu.dk/cmr</u>
- Data at htts://cmr.fysik.dtu.dk

Computational Materials Repository

Generic data view

Project specific interface: Light absorbing materials for water splitting

Computational Materials Repository

http://cmr.fysik.dtu.dk - the database

http://wiki.fysik.dtu.dk/cmr - the software, publication to appear in Comp. Sci. Eng.

Water splitting

Complicated process:

- Light absorption
- Electron-hole motion
- Induce reactions

Examples: TiO₂, GaN:ZnO, ZnGeN₂:ZnO

(Fujishima and Honda, Nature 1972) (Maeda et al., JACS, **127**, 8286 (2005))

Materials for water splitting

DTU

- Chemical/structural stability
- Band gap of 1.5-3 eV (overpotentials, losses)
- Band edge positions straddle the water redox potentials
- Good electron/hole mobilities
- Low cost, non-toxicity
- Good catalytic properties

Principle of water splitting using semiconductor photocatalysts.

Methodology – density functional theory + friends

GPAW – projector augmented wave method in real space

J. Enkovaara *et al.* J. Phys.:Cond. Mat. **22** (2010) ← **Review article** *https://wiki.fysik.dtu.dk/gpaw/* ← **Free download, GPL**

- □ High accuracy: Wave functions expanded on real space grids or plane waves
- □ High efficiency: Wave functions expanded in atomic-like orbitals (LCAO)
- □ Efficient parallelization (good scalability up to > 32.000 CPUs)
- □ Xc-functionals: LDA, GGAs, meta-GGA, LDA+U, EXX, vdWDF, GLLB, BEEF
- □ Time-dependent DFT (including "Bootstrap")
- □ Many-body perturbation theory (GW and Bethe-Salpeter equation)
- Phonons and electron-phonon coupling
- Quantum electron transport
- □ Atomic Simulation Environment (ASE) python scripting interface

Materials – cubic perovskites

- Perovskite, common stable structure, 50% are quasi-cubic
- Variety of properties: ferroelectricity, magnetism, superconductivity and (photo)catalytic activity
- 52 different metallic elements
- Different anions (O, N, S, F, Cl, ...)

Excluded elements:

- Non Metals;
- Radioactive, toxic.

ABO₃

10

Predicting stability of oxides – Heat of formation

- Focus on oxides because of high stability (towards oxidation!)
- DFT-RPBE calculated formation energy for rutile dioxides.
- Similar results obtained for perovskite structures.

J I Martínez, H A Hansen, J. Rossmeisl, and J. K. Nørskov, Phys. Rev B 2009

Calculation of bandgaps

- DFT is aimed at calculating ground state total energies – does not provide bandgap
- Bandgaps particularly bad for (semi-)local approximations
- GLLB approximation
 - Improved xc-potential compared to LDA/GGA
 - Explicit evaluation of derivative discontinuity

$$E_g^{QP} = E_g^{KS} + \Delta_{xc}$$

First description: Gritsenko *et al.*, *Phys. Rev. A* **51**, 1944 (1995). Implemented in GPAW: Kuisma *et al.*, *Phys. Rev. B* **82**, 115106 (2010).

Optical absorption spectra with GLLB-SC

Derivative discontinuity used in spectrum for TDDFT, but not for W in BSE.

Jun Yan, K. W. Jacobsen, and K. S. Thygesen, PRB 86, 45208 (2012)

Ag surface plasmon with GLLB-SC

DTU

J. Yan, K. W. Jacobsen, and K. S. Thygesen, PRB 84, 235430 (2011)

The GLLB-SC (solid-correlation) xcfunctional:

$$E_g^{QP} = E_g^{KS} + \Delta_{xc}$$

Derivative discontinuity

- \Box Bandgaps within ~0.5 eV of exp.
- Minimal computational cost
- Neglect of electron-hole interaction – excitons

Band edge positions

Empirical formula:

M. A. Butler and D. S. Ginley, Journal of The Electrochemical Society (1978) Y Xu and MAA Schoonen, American Mineralogist (2000)

One- and two-photon water splitting

 H_2 photocatalyst: Si O_2 photocatalyst: screening

Screening parameters	One-photon WS	Two-photon WS
Chemical/structural stability (ΔE) Bandgap (E_{gap}) Band edges (VB _{edge} , CB _{edge})	$\begin{array}{l} \Delta E \leq 0.2 \ \mathrm{eV} \\ 1.5 \leq E_{\mathrm{gap}} \leq 3 \ \mathrm{eV} \\ \mathrm{VB}_{\mathrm{edge}} > 1.23 \ \mathrm{eV} \\ \mathrm{CB}_{\mathrm{edge}} < 0 \ \mathrm{eV} \end{array}$	$\begin{array}{l} \Delta E \leq 0.2 \ \mathrm{eV} \\ 1.3 \leq E_{\mathrm{gap}} \leq 3 \ \mathrm{eV} \\ \mathrm{VB}_{\mathrm{edge}}^{\mathrm{anode}} > 1.23 \ \mathrm{eV} \\ \mathrm{CB}_{\mathrm{edge}}^{\mathrm{cathode}} < 0 \ \mathrm{eV} \\ \mathrm{VB}_{\mathrm{edge}}^{\mathrm{cathode}} > \mathrm{CB}_{\mathrm{edge}}^{\mathrm{anode}} \end{array}$

Tandem cell efficiency

(J. R. Bolton et al., *Nature* 1985.)

(M. G. Walter et al., Chem Rev 110, 6446, 2010)

(I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, Energy & Environmental Science, doi: 10.1039/c2ee22341d)

Perovskites: ABO₃ candidates

One-photon water splitting – oxide candidates

Empirical formula for the conduction band relative to NHE: Butler and Ginley (1978)

Oxides, oxynitrides, oxysulfides, oxyfluorides, oxyfluornitrides

Materials candidates:

- ABO₃ :10
 - ABO₂N :5 BaTaO₂N, SrTaO₂N, CaTaO₂N, LaTiO₂N (known) MgTaO₂N (unknown)
- ABON₂ :2 LaTaON₂ (known) YTaON₂ (unknown)

3

Bandgap [eV]

- ABN₃ :0
- ABO₂S :0
- ABO₂F :3
- ABOFN :0

2.0

Heat of Formation [eV/atom]

-0.5

0.2

LaTaON₂ (known) YTaON₂ (unknown)

G H⁺ H⁺ H^{*}/H₂ Potential

5

6

20 candidate materials

One-photon water splitting

Further analysis of candidate materials: bandgap calculations

Tandem cell water splitting: Screening results

I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, *Energy & Environmental Science*, **5**, 9034 (2012).

LaTiO₂N now under experimental investigation at CINF/CASE/DTU.

Data mining

- Understanding
 - Wealth of information available
 - Many (and identifying new) chemical concepts and rules unused
 - Valence
 - Metal, if odd number of electrons in unit cell
 - Stability size rule: tolerance factor ~ 1
- Prediction
 - Use information from one screening to make subsequent ones more efficient
 - Maybe based on understanding
 - Maybe not "machine learning"

Clustering based on bandgap for ABO₃: rediscovering valence

DTU

Learning on ABO_3 – predicting for ABO_2N

ABO_2N

A-ion	B-ion	Stable?	Bandgap [eV]
\mathbf{Ca}	Ta	\checkmark	2.2
\mathbf{Sr}	Ta	\checkmark	2.1
Ca	Nb	\checkmark	1.4
\mathbf{Sr}	Nb	\checkmark	1.4
Ba	Ta	\checkmark	2.0
La	Τi	\checkmark	2.5
Ba	Nb	\checkmark	1.3
$^{\rm Pb}$	Ta	\checkmark	2.0
La	\mathbf{Zr}	\checkmark	3.4
$^{\rm Pb}$	Nb	\checkmark	1.3
La	Hf	\checkmark	3.8
Mg	Ta	\checkmark	2.1
Mg	Nb		1.5
Ca	V		0
\mathbf{Sr}	V		0
La	V		0
La	Sn		1.8
$_{\rm Ga}$	Ti		0
Υ	Ti		2.4
In	Ti		0.2
Tl	Ti		0
Ba	V		0
La	Si		3.0
La	Ge		0.2
Ge	Ta		1.8
\mathbf{Sn}	Ta	\checkmark	1.2

Probability for a perovskite with a given A-ion (or B-ion) to be stable and have a bandgap considering only systems obeying the two rules:

<u>Odd/even rule</u>: only a system with even number of electrons in the unit cell can form a semiconductor/insulator.

<u>Valence rule</u>: the sum of the possible valences of the two metals and of the anions have to be equal in absolute value for a semiconductor to be possible.

πυυς	A	В	Ο	z
------	---	---	---	---

A-ion	Probability [%]	B-ion	Probability [%]
Na	60.0	Ta	34.6
\mathbf{Sr}	50.0	Nb	34.6
Ca	50.0	\mathbf{Zr}	33.3
Li	50.0	Hf	27.8
Κ	50.0	Ti	26.1
$_{\rm Ba}$	40.0	Sn	13.6
\mathbf{Cs}	33.3	Al	10.5
\mathbf{Rb}	33.3	Ge	9.1
Ag	33.3	Sb	7.7
La	21.1	V	7.4
Sn	13.6	Sc	5.2
$^{\rm Pb}$	13.6	Ga	5.2
Tl	10.5	In	5.2
In	10.5		
$_{\rm Ga}$	10.5		
Mg	10.0		
Υ	5.3		
Ge	4.5		

Prediction

Towards bandgap engineering: double perovskites

Double perovskite: obtained combining two stable cubic perovskites with a bandgap.

New "design rules":

- Double perovskite has average of perovskite gaps
- But, for B1 p-metal and B2 dmetal gap is significantly increased (but typically > 4 eV)
- Several hundred new potential water splitting materials discovered

Calculated bandgaps

Towards bandgap engineering: layered perovskites + ICSD

Collaboration with Materials Project, Anubhav Jain, Gerbrand Ceder, Bandgaps calculated for pre-optimized structures

CMR website for perovskites

Computational Materials Repository

http://cmr.fysik.dtu.dk - the database

http://wiki.fysik.dtu.dk/cmr - the software, publication to appear in Comp. Sci. Eng.

Optimized Bayesian Error Estimation xc-Functional: BEEF-vdW

$$E_{xc} = \sum_{m=0} a_m E_m^{\text{GGA-x}} + \alpha_c E^{\text{LDA-c}} + (1 - \alpha_c) E^{\text{PBE-c}} + E^{\text{nl-c}}$$

- Linear model
 - GGA exchange expanded on orthogonal Legendre polynomials
 - Non-local correlation included as in vdW-DF2
 - •Databases
 - Molecules (fragmentation, reaction energies and barriers)
 - Solids (cohesive energies, lattice constants)
 - Chemisorption energies
 - Binding energies for non-covalently bonded systems
 - •Important issues
 - Avoid overfitting Tikhonov regularization, bootstrapping
 - Balancing relative importance of datasets

BEEF-vdW:

Jess Wellendorff, Keld Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Physical Review B (Condensed Matter) **85**, (2012).

V. Petzold, T. Bligaard, and K. W. Jacobsen, Top Catal **55**, 402 (2012).

Here is the BEEF(-vdW)

Exchange enhancement factor

Available in the GPAW code including error estimation

Mean Absolute Deviation

Overall very good performance. "Robust".

Breaking the "GGA-line"?

CO/Rh(111) adsorption energy vs. the Rh(111) surface energy.

Error bars indicate BEEF-vdW ensemble error estimates.

DTU

Purple diamond indicates experimental result.

Coming up: Functional at meta-GGA level.

Original plot from: L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater. 9, 741 (2010).

Data available in CMR

	ſ		COMPU	TATIONA	L MATERIA	ALS REPO	DSITORY								
		CAMA Center for Atomic-scale Materials Design	Density functionals develo	Access to for surfa pment wit	o data from ce science th Bayesia	the study : Exchang n error es	/: ge-correla timation	tion m	odel	Da	anmarks Univer	Tekni: rsitet	ske		
		HC	DME	Pro	oject descrip	otion			Det	ails or	n data				
Hi	de search box				« 1 <u>2</u> <u>3</u>	» 10	\$						do	wnload	as cs
	Database:	CE27	\$		name	atoms	ref_energy	PBE I	RPBE	PBEsol	l revTPSS	vdW-	vdW- DF2	optB88- vdW	BEEF
	Sub database	:	÷		H2/Pt(111)	<u>H Pt</u> (1H, 20Pt)	-0.410	<u>-0.976</u> -	0.652	<u>-1.348</u>	<u>-0.816</u>	-0.330	<u>-0.316</u>	<u>-0.777</u>	-0.46
	System name:	:	÷		H2/Ni(111)	<u>H Ni</u> (1H, 20Ni)	-0.980	-1.131 -	0.786	<u>-1.526</u>	<u>-1.108</u>	<u>-0.581</u>	<u>-0.530</u>	<u>-0.996</u>	-0.68
	Functionals:				H2/Ni(100)	<u>H Ni</u> (1H, 20Ni)	-0.930	<u>-1.053</u> -	0.737	<u>-1.519</u>	<u>-1.137</u>	<u>-0.439</u>	<u>-0.338</u>	<u>-0.915</u>	-0.60
		✓PBEsol	optB88-vdW		H2/Rh(111)	H Rh (1H, 20Rh)	-0.810	<u>-1.067</u> -	0.725	-1.431	<u>-0.988</u>	<u>-0.482</u>	<u>-0.423</u>	<u>-0.882</u>	-0.61
	BLYP		C09-vdW		H2/Pd(111)	H Pd (1H, 20Pd)	-0.910	<u>-1.117</u> -	0.806	<u>-1.503</u>	<u>-0.972</u>	<u>-0.491</u>	<u>-0.465</u>	<u>-0.941</u>	-0.62
	OHCTH407 ✓RPBE	✓revTPSS ✓vdW-DF	✓BEEF-vdW		H2/Ir(111)	<u>H</u> <u>Ir</u> (1H, 20Ir)	-0.550	-0.852 -	0.535	-1.250	<u>-0.836</u>	<u>-0.283</u>	<u>-0.247</u>	<u>-0.707</u>	-0.42
	_AM05	✓vdW-DF2			H2/Co(0001)	<u>Co H</u> (20Co, 1H)	-0.690	<u>-1.131</u> -	0.811	<u>-1.516</u>	<u>-1.128</u>	<u>-0.602</u>	<u>-0.569</u>	<u>-1.006</u>	-0.69
	Restrict the re (If none are cl	sult to contain ALL s hosen all atoms are	selected atoms: allowed.)		H2/Ru(0001)	<u>H Ru</u> (1H, 20Ru)	-1.040	<u>-1.197</u> -	0.884	-1.555	<u>-1.192</u>	<u>-0.610</u>	<u>-0.591</u>	<u>-1.014</u>	-0.73
	The maximum	number of atoms a	llowed is limited to 4.		N2/Fe(100)	Fe N (20Fe 2N)	-2.300	<u>-2.885</u> -	2.050	<u>-3.953</u>	<u>-3.386</u>	<u>-2.138</u>	<u>-2.088</u>	<u>-3.190</u>	-1.98
					NO/Ni(100)	<u>Ni O</u> (20Ni,	-3.990	-4.533 -	3.889	<u>-5.297</u>	<u>-4.929</u>	<u>-4.045</u>	<u>-3.982</u>	<u>-4.894</u>	-4.06
						10)									
	Na Mg		Al Si P S Cl Ar			<u>ł</u>	<u>http://</u>	cmr	:fys	sik.o	<u>dtu.d</u>	<u>k</u>			

Outlook

- Computational Materials Repository
 - MGI much more software development needed
 - A GPL standard for software <u>and data</u>?
- Water splitting materials screening
 - Tailoring of bandgaps
 - Additional important factors
 - Carrier mobilities
 - Catalysis
- XC functional development
 - Important for efficient calculations
 - Much larger expt/comp databases needed coupled cluster/RPA+more – more systematic development
 - More sophisticated machine learning techniques

Acknowledgements

<u>CAMD/DTU:</u> Ivano E. Castelli Thomas Olsen Kristian S. Thygesen Jun Yan Soumendu Datta (now at Bose Ctr, Kalkutta)

Vivien Petzold Keld Lundgaard Jess Wellendorff

David D. Landis Marcin Dulak

<u>SLAC/Stanford Univ.:</u> Andreas Møgelhøj Jens Hummelshøj Thomas Bligaard Jens K. Nørskov CINF-CASE/DTU:

Ib Chorkendorff Søren Dahl (now at Topsøe A/S)

Stanford Univ: Tom Jaramillo

<u>Argonne Nat'l Lab:</u> Jeff Greeley

<u>Univ. of Chicago:</u> Svetlozar Nestorov

Catalysis for Sustainable Energy

CASE

References

Computational Materials Repository

The database: <u>http://cmr.fysik.dtu.dk</u>

The software: <u>http://wiki.fysik.dtu.dk/cmr</u> - pubilcation to appear in Computing in Science and Engineering

Optimized xc-functionals

J. Wellendorff, K. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Physical Review B (Condensed Matter) **85**, (2012).

V. Petzold, T. Bligaard, and K. W. Jacobsen, Top Catal 55, 402 (2012).

J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna, and K. W. Jacobsen, Phys Rev Lett **95**, 216401 (2005).

Watersplitting

I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, *Energy & Environmental Science*, **5**, 5814 (2012)

I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, and K.W. Jacobsen, *Energy & Environmental Science*, **5**, 9034 (2012).

The GLLB xc-functional (Gritsenko, van Leeuwen, van Lenthe and Baerends):

$$E_g^{QP} = E_g^{KS} + \Delta_{xc}$$

Derivative discontinuity

Screening + response $v_{\rm x}({\bf r}) = v_{\rm S}({\bf r}) + v_{\rm resp}({\bf r})$ $v_{\rm S}(\mathbf{r}) = \frac{2\epsilon_x^{\rm GGA}(\mathbf{r};n)}{n(\mathbf{r})}$ $|a|a(m)|^2$

Material	E_{g}^{KS} (LDA)	$E_{\rm g}^{ m KS}$	Δ_{xc}	$E_{ m g}^{ m QP}$	Exp.
C	4.09	4.14	1.27	5.41	5.48
Si	0.443	0.68	0.32	1.00	1.17
GaAs	0.36	0.79	0.25	1.04	1.63
AlAs	1.34	1.67	0.82	2.49	2.32
LiF	8.775	10.87	4.09	14.96	14.2
Ar	8.18	10.28	4.69	14.97	14.2

$$v_{\text{resp}}(\mathbf{r}) = \sum_{i} K[n] \sqrt{\varepsilon_{\text{r}} - \varepsilon_{i}} \frac{|\psi_{i}(\mathbf{r})|}{n(\mathbf{r})}$$
$$\Delta_{x,\text{resp}}(\mathbf{r}) = \sum_{i}^{N} K(\sqrt{\varepsilon_{N+1} - \varepsilon_{i}} - \sqrt{\varepsilon_{N} - \varepsilon_{i}}) \frac{|\psi_{i}(\mathbf{r})|^{2}}{n(\mathbf{r})}$$

GLLB-SC: Screening exchange-correlation from PBEsol

First description: Gritsenko et al., Phys. Rev. A 51, 1944 (1995).

Implemented in GPAW: Kuisma et al., Phys. Rev. B 82, 115106 (2010).

Perovskites: Heat of formation

Stable materials:

- Low electronegativity
- Sum of oxidation numbers = 6
- Geometric tolerance factor ~1

Perovskites: Band gaps

Most perovskites are metallic or low-gap semiconductors

Analyzing gap formation

ZnSiO₃

AgNbO₃

Formation energy = -1 eV;

Band gap = 2.4 eV.

Valence band:

O – **p** orbitals (too deep for water-splitting);

DTU

Conduction band:

Zn – s orbitals.

Formation energy = -0.6 eV;

Band gap = 3.0 eV.

Valence band:

Ag – d and O – p orbitals;

Conduction band:

Nb – d orbitals.

Oxynitrides

Tandem cell principle

Two semiconductors – two photons

- SC 1: Hole for oxygen evolution
- SC 2: Electron fro hydrogen evolution

Requirements:

- structural/chemical stability;
- two visible light harvests (optimal gaps: 1.1 eV and 1.7 eV);
- band edges that match with oxygen and hydrogen potentials;

- Small overlap between the semiconductors band edges for the electron transfer reaction.

 H_2 photocatalyst: Si O_2 photocatalyst: screening

Extended stability analysis

Pool of reference systems:

- Single metal bulk: A(s) and B(s)
- Single metal oxides: $A_x O_y(s)$ (and nitrides, sulfides, ...)
- Bimetallic oxides A_xB_yO_z(s)
 Composition and structure available experimentally
 Energy calculated
 Ownerse is taken from use the (and budges are used and a)
- Oxygen is taken from water (and hydrogen molecule)

Formation energy:

$$\Delta E = ABO_3(s) - \min_{c_i} (c_1 A(s) + c_2 B(s) + c_3 A_x O_y(s) + c_4 B_x O_y(s) + c_5 O)$$

$$c_1 + c_3 = 1, \qquad c_2 + c_4 = 1, \qquad c_3 + c_4 + c_5 = 3$$

 \rightarrow Solved by linear programming.

Double perovskite example: $BaHfO_3$, $SrSnO_3 \rightarrow BaHfSrSnO_6$

Bandgaps: 6.6 eV

Conduction band edge:

•BaHfO3 •Hf(d)-Sn(p) hybridization -> increased bandgap

6.3 eV

3.0 eV

•BaHfSrSnO6

SrSnO3

Fitting to individual data sets

Training conflict between molecules and solids remain.

Transparent protecting shield – photoanode

Double perovskites

Difference between the double perovskite bandgap and the average gap coming from the two constituent cubic perovskites

New "design rules":

- Double perovskite has average of perovskite gaps
- But, for B1 p-metal and B2 dmetal gap is significantly increased (but typically > 4eV)

•B1-ion(d) - B2-ion(p) hybridization -> increased bandgap

0 **Difference Bandgap (eV)**

2

3

 $^{-2}$

-1

-3

OER overpotentials

Joel Varley, Monica Garcia-Mota, Jens K. Nørskov

Towards bandgap engineering: double perovskites

Regularization

Smoothness – Tikhonov reg. Improves transferability

$$C_{reg} = \omega^2 \int \left(\frac{d^2 F_x(s(t))}{dt^2}\right)^2 dt$$

Bootstrapping

Bootstrapping is used to estimate the dependency of the fit on the database bootstrapping can be used. (Alternative to cross validation).

Consider a database with N points. A bootstrap sample is obtained by selecting N points from the database (with possible repetition)

Averaging over bootstrap samples gives information about both bias and variance $EPE = 0.368 err + 0.632 Err_1$

Estimated Prediction Error

– 0.632-rule

$$Err_1 = \frac{1}{N} \sum_i \frac{1}{Nos: i \notin s} \sum_{s: i \notin s} (y_i^s - y_i)^2$$

 $err = \frac{1}{N} \sum_{i} (y_i^s - y_i)^2$

Cluster analysis: dendrograms

Linkage criterion: cut-off distance *d*; two data points belong to the same cluster if there is a chain of data points with distances less than *d* which connect them.

Distance between two A-ions:

$$d(A_1, A_2) = \frac{1}{N_B} \sum_{B} \left(E_{A_1 B O_3}^{gap} - E_{A_2 B O_3}^{gap} \right)^2$$

Measures similarity between rows

Regularization using bootstrap

Smoothness – Tikhonov reg.

Improves transferability

$$C_{reg} = \omega^2 \int \left(\frac{d^2 F_x(s(t))}{dt^2}\right)^2 dt$$

DTU

Bootstrapping

Estimates the dependency of the fit on the database: Bias and variance

Estimated Prediction Error – 0.632-rule

The data sets

- G3/99 Molecular formation energies (223 molecules)
- RE42 Molecular reaction energies (42 reactions)
- DBH24/08 Molecular reaction barriers (12 forward and backward barriers)
- S22x5 Non-covalent interactions (22 molecules at 5 distances)
- Sol34Ec Solid cohesive energies (34 solids)
- Sol27Ec Solid cohesive energies (27 cubic solids)
- Sol27LC Lattice constants (27 cubic solids)
- CE27 Chemisorption energies (27 systems)

Balancing data sets

DTU

Avoid the tail regions where one data set is done extremely well and another very poorly.

One solution: Minimize product of relative costs.