1,700 research outputs found

    Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface

    Full text link
    The measured low initial sticking probability of oxygen molecules at the Al(111) surface that had puzzled the field for many years was recently explained in a non-adiabatic picture invoking spin-selection rules [J. Behler et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to conserve the initial spin-triplet character of the free O2 molecule during the molecule's approach to the surface. A new locally-constrained density-functional theory approach gave access to the corresponding potential-energy surface (PES) seen by such an impinging spin-triplet molecule and indicated barriers to dissociation which reduce the sticking probability. Here, we further substantiate this non-adiabatic picture by providing a detailed account of the employed approach. Building on the previous work, we focus in particular on inaccuracies in present-day exchange-correlation functionals. Our analysis shows that small quantitative differences in the spin-triplet constrained PES obtained with different gradient-corrected functionals have a noticeable effect on the lowest kinetic energy part of the resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Mouse precision-cut liver slices as an ex vivo model to study drug-induced cholestasis

    Get PDF
    Drugs are often withdrawn from the market due to the manifestation of drug-induced liver injury (DILI) in patients. Drug-induced cholestasis (DIC), defined as obstruction of hepatic bile flow due to medication, is one form of DILI. Because DILI is idiosyncratic, and the resulting cholestasis complex, there is no suitable in vitro model for early DIC detection during drug development. Our goal was to develop a mouse precision-cut liver slice (mPCLS) model to study DIC and to assess cholestasis development using conventional molecular biology and analytical chemistry methods. Cholestasis was induced in mPCLS through a 48-h-incubation with three drugs known to induce cholestasis in humans, namely chlorpromazine (15, 20, and 30 µM), cyclosporin A (1, 3, and 6 µM) or glibenclamide (25, 50, and 65 µM). A bile-acid mixture (16 µM) that is physiologically representative of the human bile-acid pool was added to the incubation medium with drug, and results were compared to incubations with no added bile acids. Treatment of PCLS with cholestatic drugs increased the intracellular bile-acid concentration of deoxycholic acid and modulated bile-transporter genes. Chlorpromazine led to the most pronounced cholestasis in 48 h, observed as increased toxicity; decreased protein and gene expression of the bile salt export pump; increased gene expression of multidrug resistance-associated protein 4; and accumulation of intracellular bile acids. Moreover, chlorpromazine-induced cholestasis exhibited some transition into fibrosis, evidenced by increased gene expression of collagen 1A1 and heatshock protein 47. In conclusion, we demonstrate that mPCLS can be used to study human DIC onset and progression in a 48 h period. We thus propose this model is suited for other similar studies of human DIC

    Remark on Pauli-Villars Lagrangian on the Lattice

    Full text link
    It is interesting to superimpose the Pauli-Villars regularization on the lattice regularization. We illustrate how this scheme works by evaluating the axial anomaly in a simple lattice fermion model, the Pauli-Villars Lagrangian with a gauge non-invariant Wilson term. The gauge non-invariance of the axial anomaly, caused by the Wilson term, is remedied by a compensation among Pauli-Villars regulators in the continuum limit. A subtlety in Frolov-Slavnov's scheme for an odd number of chiral fermions in an anomaly free complex gauge representation, which requires an infinite number of regulators, is briefly mentioned.Comment: 14 pages, Phyzzx. The final version to appear in Phys. Rev.

    Constraints on the Existence of Chiral Fermions in Interacting Lattice Theories

    Full text link
    It is shown that an interacting theory, defined on a regular lattice, must have a vector-like spectrum if the following conditions are satisfied: (a)~locality, (b)~relativistic continuum limit without massless bosons, and (c)~pole-free effective vertex functions for conserved currents. The proof exploits the zero frequency inverse retarded propagator of an appropriate set of interpolating fields as an effective quadratic hamiltonian, to which the Nielsen-Ninomiya theorem is applied.Comment: LaTeX, 9 pages, WIS--93/56--JUNE--P

    A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions

    Get PDF
    By carrying out a systematic expansion of Feynman integrals in the lattice spacing, we show that the axial anomaly in the U(1) lattice gauge theory with Wilson fermions, as determined in one-loop order from an irrelevant lattice operator in the Ward identity, must necessarily be identical to that computed from the dimensionally regulated continuum Feynman integrals for the triangle diagrams.Comment: 1 figure, LaTeX, 18 page

    Room temperature structure and energetics of water-hydroxyl layers on Pt(111)

    Full text link
    The interactions between water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a room temperature molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls

    Local-metrics error-based Shepard interpolation as surrogate for highly non- linear material models in high dimensions

    Get PDF
    Many problems in computational materials science and chemistry require the evaluation of expensive functions with locally rapid changes, such as the turn-over frequency of first principles kinetic Monte Carlo models for heterogeneous catalysis. Because of the high computational cost, it is often desirable to replace the original with a surrogate model, e.g., for use in coupled multiscale simulations. The construction of surrogates becomes particularly challenging in high-dimensions. Here, we present a novel version of the modified Shepard interpolation method which can overcome the curse of dimensionality for such functions to give faithful reconstructions even from very modest numbers of function evaluations. The introduction of local metrics allows us to take advantage of the fact that, on a local scale, rapid variation often occurs only across a small number of directions. Furthermore, we use local error estimates to weigh different local approximations, which helps avoid artificial oscillations. Finally, we test our approach on a number of challenging analytic functions as well as a realistic kinetic Monte Carlo model. Our method not only outperforms existing isotropic metric Shepard methods but also state-of-the-art Gaussian process regression

    Analysis of Granular Packing Structure by Scattering of THz Radiation

    Get PDF
    Scattering methods are widespread used to characterize the structure and constituents of matter on small length scales. This motivates this introductory text on identifying prospective approaches to scattering-based methods for granular media. A survey to light scattering by particles and particle ensembles is given. It is elaborated why the established scattering methods using X-rays and visible light cannot in general be transferred to granular media. Spectroscopic measurements using Terahertz radiation are highlighted as they to probe the scattering properties of granular media, which are sensitive to the packing structure. Experimental details to optimize spectrometer for measurements on granular media are discussed. We perform transmission measurements on static and agitated granular media using Fourier-transform spectroscopy at the THz beamline of the BessyII storage ring. The measurements demonstrate the potential to evaluate degrees of order in the media and to track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference
    • …
    corecore