2,360 research outputs found
Remark on Pauli-Villars Lagrangian on the Lattice
It is interesting to superimpose the Pauli-Villars regularization on the
lattice regularization. We illustrate how this scheme works by evaluating the
axial anomaly in a simple lattice fermion model, the Pauli-Villars Lagrangian
with a gauge non-invariant Wilson term. The gauge non-invariance of the axial
anomaly, caused by the Wilson term, is remedied by a compensation among
Pauli-Villars regulators in the continuum limit. A subtlety in Frolov-Slavnov's
scheme for an odd number of chiral fermions in an anomaly free complex gauge
representation, which requires an infinite number of regulators, is briefly
mentioned.Comment: 14 pages, Phyzzx. The final version to appear in Phys. Rev.
Manifestly Gauge Covariant Treatment of Lattice Chiral Fermion
We propose a lattice formulation of the chiral fermion which maximally
respects the gauge symmetry and simultaneously is free of the unwanted species
doublers. The formulation is based on the lattice fermion propagator and
composite operators, rather than on the lattice fermion action. The fermionic
determinant is defined as a functional integral of an expectation value of the
gauge current operator with respect to the background gauge field: The gauge
anomaly is characterized as the non-integrability. We perform some perturbative
test to confirm the gauge covariance and an absence of the doublers. The
formulation can be applied rather straightforwardly to numerical simulations in
the quenched approximation.Comment: 11 pages, phyzzx, The final version to appear in Phys. Rev.
A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions
By carrying out a systematic expansion of Feynman integrals in the lattice
spacing, we show that the axial anomaly in the U(1) lattice gauge theory with
Wilson fermions, as determined in one-loop order from an irrelevant lattice
operator in the Ward identity, must necessarily be identical to that computed
from the dimensionally regulated continuum Feynman integrals for the triangle
diagrams.Comment: 1 figure, LaTeX, 18 page
Constraints on the Existence of Chiral Fermions in Interacting Lattice Theories
It is shown that an interacting theory, defined on a regular lattice, must
have a vector-like spectrum if the following conditions are satisfied:
(a)~locality, (b)~relativistic continuum limit without massless bosons, and
(c)~pole-free effective vertex functions for conserved currents.
The proof exploits the zero frequency inverse retarded propagator of an
appropriate set of interpolating fields as an effective quadratic hamiltonian,
to which the Nielsen-Ninomiya theorem is applied.Comment: LaTeX, 9 pages, WIS--93/56--JUNE--P
Normal origamis of Mumford curves
An origami (also known as square-tiled surface) is a Riemann surface covering
a torus with at most one branch point. Lifting two generators of the
fundamental group of the punctured torus decomposes the surface into finitely
many unit squares. By varying the complex structure of the torus one obtains
easily accessible examples of Teichm\"uller curves in the moduli space of
Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves.
A p-adic origami is defined as a covering of Mumford curves with at most one
branch point, where the bottom curve has genus one. A classification of all
normal non-trivial p-adic origamis is presented and used to calculate some
invariants. These can be used to describe p-adic origamis in terms of glueing
squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer
Toward a script theory of guidance in computer-supported collaborative learning
This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions
Manifestly Gauge Covariant Treatment of Lattice Chiral Fermions. II
We propose a new formulation of chiral fermions on a lattice, on the basis of
a lattice extension of the covariant regularization scheme in continuum field
theory. The species doublers do not emerge. The real part of the effective
action is just one half of that of Dirac-Wilson fermion and is always gauge
invariant even with a finite lattice spacing. The gauge invariance of the
imaginary part, on the other hand, sets a severe constraint which is a lattice
analogue of the gauge anomaly free condition. For real gauge representations,
the imaginary part identically vanishes and the gauge invariance becomes exact.Comment: 15 pages, PHYZZX. The title is changed. The final version to appear
in Phys. Rev.
The Evolution of Cosmic Magnetic Fields: From the Very Early Universe, to Recombination, to the Present
(abridged) A detailed examination of the evolution of stochastic magnetic
fields between high cosmic temperatures and the present epoch is presented. A
simple analytical model matching the results of the 3D MHD simulations allows
for the prediction of present day magnetic field correlation lengths and
energy. Our conclusions are multi fold. (a) Initial primordial fields with only
a small amount of helicity are evolving into maximally helical fields. (b)
There exists a correlation between the strength of the magnetic field, B, at
the peak of it's spectrum and the location of the peak, given at the present
epoch by: B ~ 5x10^{-12} (L/kpc) Gauss, where L is the correlation length
determined by the initial magnetic field. (c) Concerning studies of generation
of cosmic microwave background (CMBR) anisotropies due to primordial magnetic
fields of B~10^{-9} Gauss on ~ 10 Mpc scales, such fields are not only
impossible to generate in early causal magnetogenesis scenarios but also
seemingly ruled out by distortions of the CMBR spectrum due to magnetic field
dissipation on smaller scales and the overproduction of cluster magnetic
fields. (d) The most promising detection possibility of CMBR distortions due to
primordial magnetic fields may be on much smaller scales at higher multipoles
l~10^6 where the signal is predicted to be the strongest. (e) It seems possible
that magnetic fields in clusters of galaxies are entirely of primordial origin,
without invoking dynamo amplification. Such fields would be of (pre-collapse)
strength 10^{-12} - 10^{-11} Gauss with correlation lengths in the kpc range,
and would also exist in voids of galaxies.Comment: 35 pages, 22 figures, revtex style, submitted to PR
A Perturbative Study of a General Class of Lattice Dirac Operators
A perturbative study of a general class of lattice Dirac operators is
reported, which is based on an algebraic realization of the Ginsparg-Wilson
relation in the form
where stands for a non-negative integer.
The choice corresponds to the commonly discussed Ginsparg-Wilson relation
and thus to the overlap operator. We study one-loop fermion contributions to
the self-energy of the gauge field, which are related to the fermion
contributions to the one-loop function and to the Weyl anomaly. We
first explicitly demonstrate that the Ward identity is satisfied by the
self-energy tensor. By performing careful analyses, we then obtain the correct
self-energy tensor free of infra-red divergences, as a general consideration of
the Weyl anomaly indicates. This demonstrates that our general operators give
correct chiral and Weyl anomalies. In general, however, the Wilsonian effective
action, which is supposed to be free of infra-red complications, is expected to
be essential in the analyses of our general class of Dirac operators for
dynamical gauge field.Comment: 30 pages. Some of the misprints were corrected. Phys. Rev. D (in
press
Experimental characterization of frequency dependent squeezed light
We report on the demonstration of broadband squeezed laser beams that show a
frequency dependent orientation of the squeezing ellipse. Carrier frequency as
well as quadrature angle were stably locked to a reference laser beam at
1064nm. This frequency dependent squeezing was characterized in terms of noise
power spectra and contour plots of Wigner functions. The later were measured by
quantum state tomography. Our tomograph allowed a stable lock to a local
oscillator beam for arbitrary quadrature angles with one degree precision.
Frequency dependent orientations of the squeezing ellipse are necessary for
squeezed states of light to provide a broadband sensitivity improvement in
third generation gravitational wave interferometers. We consider the
application of our system to long baseline interferometers such as a future
squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure
- …