An origami (also known as square-tiled surface) is a Riemann surface covering
a torus with at most one branch point. Lifting two generators of the
fundamental group of the punctured torus decomposes the surface into finitely
many unit squares. By varying the complex structure of the torus one obtains
easily accessible examples of Teichm\"uller curves in the moduli space of
Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves.
A p-adic origami is defined as a covering of Mumford curves with at most one
branch point, where the bottom curve has genus one. A classification of all
normal non-trivial p-adic origamis is presented and used to calculate some
invariants. These can be used to describe p-adic origamis in terms of glueing
squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer