2,595 research outputs found

    CO oxidation at Pd(100): A first-principles constrained thermodynamics study

    Full text link
    The possible formation of oxides or thin oxide films (surface oxides) on late transition metal surfaces is recently being recognized as an essential ingredient when aiming to understand catalytic oxidation reactions under technologically relevant gas phase conditions. Using the CO oxidation at Pd(100) as example, we investigate the composition and structure of this model catalyst surface over a wide range of (T,p)-conditions within a multiscale modeling approach where density-functional theory is linked to thermodynamics. The results show that under the catalytically most relevant gas phase conditions a thin surface oxide is the most stable "phase" and that the system is actually very close to a transition between this oxidic state and a reduced state in form of a CO covered Pd(100) surface.Comment: 13 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory

    Get PDF
    Non-adiabatic effects play an important role in many chemical processes. In order to study the underlying non-adiabatic potential-energy surfaces (PESs), we present a locally-constrained density-functional theory approach, which enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs for defined charge and spin states of the chosen subsystems. The capability of the method is demonstrated by calculating non-adiabatic PESs for the scattering of a sodium and a chlorine atom, for the interaction of a chlorine molecule with a small metal cluster, and for the dissociation of an oxygen molecule at the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Chiral symmetry restoration and axial vector renormalization for Wilson fermions

    Full text link
    Lattice gauge theories with Wilson fermions break chiral symmetry. In the U(1) axial vector current this manifests itself in the anomaly. On the other hand it is generally expected that the axial vector flavour mixing current is non-anomalous. We give a short, but strict proof of this to all orders of perturbation theory, and show that chiral symmetry restauration implies a unique multiplicative renormalization constant for the current. This constant is determined entirely from an irrelevant operator in the Ward identity. The basic ingredients going into the proof are the lattice Ward identity, charge conjugation symmetry and the power counting theorem. We compute the renormalization constant to one loop order. It is largely independent of the particular lattice realization of the current.Comment: 11 pages, Latex2

    Bounds on long-lived charged massive particles from Big Bang nucleosynthesis

    Full text link
    The Big Bang nucleosynthesis (BBN) in the presence of charged massive particles (CHAMPs) is studied in detail. All currently known effects due to the existence of bound states between CHAMPs and nuclei, including possible late-time destruction of Li6 and Li7 are included. The study sets conservative bounds on CHAMP abundances in the decay time range 3x10^2 sec - 10^12 sec. It is stressed that the production of Li6 at early times T ~ 10keV is overestimated by a factor ~ 10 when the approximation of the Saha equation for the He4 bound state fraction is utilised. To obtain conservative limits on the abundance of CHAMPs, a Monte-Carlo analysis with ~ 3x10^6 independent BBN runs, varying reaction rates of nineteen different reactions, is performed (see attached erratum, however). The analysis yields the surprising result that except for small areas in the particle parameter space conservative constraints on the abundance of decaying charged particles are currently very close to those of neutral particles. It is shown that, in case a number of heretofore unconsidered reactions may be determined reliably in future, it is conceivable that the limit on CHAMPs in the early Universe could be tightened by orders of magnitude. An ERRATUM gives limits on primordial CHAMP densities when the by Ref. Kamimura et al. recently more accurately determined CHAMP reaction rates are employed.Comment: includes Erratum showing most up to date limits after determination of the most important reaction rate

    Synchronization of Sound Sources

    Full text link
    Sound generation and -interaction is highly complex, nonlinear and self-organized. Already 150 years ago Lord Rayleigh raised the following problem: Two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory (M. Abel et al., J. Acoust. Soc. Am., 119(4), 2006). For a detailed, quantitative investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization -- the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a specific nonlinear reconstruction method which yields a perfect quantitative match of experiment and theory.Comment: 5 pages, 4 figure

    Scaling of Majorana Zero-Bias Conductance Peaks

    Full text link
    We report an experimental study of the scaling of zero-bias conductance peaks compatible with Majorana zero modes as a function of magnetic field, tunnel coupling, and temperature in one-dimensional structures fabricated from an epitaxial semiconductor-superconductor heterostructure. Results are consistent with theory, including a peak conductance that is proportional to tunnel coupling, saturates at 2e2/h2e^2/h, decreases as expected with field-dependent gap, and collapses onto a simple scaling function in the dimensionless ratio of temperature and tunnel coupling.Comment: Accepted in Physical Review Letter

    Simple Observables from Fat Link Fermion Actions

    Full text link
    A comparison is made of the (quenched) light hadron spectrum and of simple matrix elements for a hypercubic fermion action (based on a fixed point action) and the clover action, both using fat links, at a lattice spacing a= 0.18 fm. Renormalization constants for the naive and improved vector current and the naive axial current are computed using Ward identities. The renormalization factors are very close to unity, and the spectroscopy of light hadrons and the pseudoscalar and vector decay constants agree well with simulations at smaller lattice spacings (and with experiment).Comment: 22 pages, 12 postscript figures, Revtex plus eps

    Embedded-Cluster Calculations in a Numeric Atomic Orbital Density-Functional Theory Framework

    Get PDF
    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level DFT calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).Comment: 12 pages, 4 figure

    Hamiltonian domain wall fermions at strong coupling

    Get PDF
    We apply strong-coupling perturbation theory to gauge theories containing domain-wall fermions in Shamir's surface version. We construct the effective Hamiltonian for the color-singlet degrees of freedom that constitute the low-lying spectrum at strong coupling. We show that the effective theory is identical to that derived from naive, doubled fermions with a mass term, and hence that domain-wall fermions at strong coupling suffer both doubling and explicit breaking of chiral symmetry. Since we employ a continuous fifth dimension whose extent tends to infinity, our result applies to overlap fermions as well.Comment: Revtex, 21 pp. Some changes in Introduction, dealing with consistency with previous wor
    • …
    corecore