571 research outputs found

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div

    Identification of pathological RA endotypes using blood-based biomarkers reflecting tissue metabolism. A retrospective and explorative analysis of two phase III RA studies

    Get PDF
    There is an increasing demand for accurate endotyping of patients according to their pathogenesis to allow more targeted treatment. We explore a combination of blood-based joint tissue metabolites (neoepitopes) to enable patient clustering through distinct disease profiles. We analysed data from two RA studies (LITHE (N = 574, follow-up 24 and 52 weeks), OSKIRA-1 (N = 131, follow-up 24 weeks)). Two osteoarthritis (OA) studies (SMC01 (N = 447), SMC02 (N = 81)) were included as non-RA comparators. Specific tissue-derived neoepitopes measured at baseline, included: C2M (cartilage degradation); CTX-I and PINP (bone turnover); C1M and C3M (interstitial matrix degradation); CRPM (CRP metabolite) and VICM (macrophage activity). Clustering was performed to identify putative endotypes. We identified five clusters (A-E). Clusters A and B were characterized by generally higher levels of biomarkers than other clusters, except VICM which was significantly higher in cluster B than in cluster A (p<0.001). Biomarker levels in Cluster C were all close to the median, whilst Cluster D was characterised by low levels of all biomarkers. Cluster E also had low levels of most biomarkers, but with significantly higher levels of CTX-I compared to cluster D. There was a significant difference in ΔSHP score observed at 52 weeks (p<0.05). We describe putative RA endotypes based on biomarkers reflecting joint tissue metabolism. These endotypes differ in their underlining pathogenesis, and may in the future have utility for patient treatment selection

    Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients

    Get PDF
    During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal cancer patients compared to subjects with adenomas (C1M, Pro-C3, C3M) and controls (C1M, Pro-C3). When patients were stratified according to their tumour stage, all four biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen remodeling biomarkers may be a measure of tumour activity and invasiveness and may provide new clinical tools for monitoring of patients with advanced stage colorectal cancer

    Mammographic texture resemblance generalizes as an independent risk factor for breast cancer

    Get PDF
    INTRODUCTION: Breast density has been established as a major risk factor for breast cancer. We have previously demonstrated that mammographic texture resemblance (MTR), recognizing the local texture patterns of the mammogram, is also a risk factor for breast cancer, independent of percent breast density. We examine if these findings generalize to another population. METHODS: Texture patterns were recorded in digitalized pre-diagnosis (3.7 years) film mammograms of a nested case–control study within the Dutch screening program (S1) comprising of 245 breast cancers and 250 matched controls. The patterns were recognized in the same study using cross-validation to form resemblance scores associated with breast cancer. Texture patterns from S1 were examined in an independent nested case–control study within the Mayo Mammography Health Study cohort (S2) of 226 cases and 442 matched controls: mammograms on average 8.5 years prior to diagnosis, risk factor information and percent mammographic density (PD) estimated using Cumulus were available. MTR scores estimated from S1, S2 and S1 + S2 (the latter two as cross-validations) were evaluated in S2. MTR scores were analyzed as both quartiles and continuously for association with breast cancer using odds ratios (OR) and adjusting for known risk factors including age, body mass index (BMI), and hormone usage. RESULTS: The mean ages of S1 and S2 were 58.0 ± 5.7 years and 55.2 ± 10.5 years, respectively. The MTR scores on S1 showed significant capability to discriminate cancers from controls (area under the operator characteristics curve (AUC) = 0.63 ± 0.02, P <0.001), which persisted after adjustment for PD. S2 showed an AUC of 0.63, 0.61, and 0.60 based on PD, MTR scores trained on S2, and MTR scores trained on S1, respectively. When adjusted for PD, MTR scores of S2 trained on S1 showed an association with breast cancer for the highest quartile alone: OR in quartiles of controls as reference; 1.04 (0.59 to 1.81); 0.95 (0.52 to 1.74); 1.84 (1.10 to 3.07) respectively. The combined continuous model with both PD and MTR scores based on S1 had an AUC of 0.66 ± 0.03. CONCLUSIONS: The local texture patterns associated with breast cancer risk in S1 were also an independent risk factor in S2. Additional textures identified in S2 did not significantly improve risk segregation. Hence, the textural patterns that indicated elevated risk persisted under differences in X-ray technology, population demographics, follow-up time and geography

    Serum type xix collagen is significantly elevated in non-small cell lung cancer:A preliminary study on biomarker potential

    Get PDF
    Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. In this study, we describe a competitive ELISA, named PRO-C19, targeting the C-terminus of collagen XIX using a monoclonal antibody. PRO-C19 was measured in serum of patients with a range of cancer types and was elevated in non-small cell lung cancer (NSCLC) (p &lt; 0.0001), small cell lung cancer (p = 0.0081), breast (p = 0.0005) and ovarian cancer (p &lt; 0.0001) compared to healthy controls. In a separate NSCLC cohort, PRO-C19 was elevated compared to controls when evaluating adenocarcinoma (AD) (p = 0.0003) and squamous cell carcinoma (SCC) (p &lt; 0.0001) patients but was not elevated in chronic obstructive pulmonary disease patients. SCC also had higher PRO-C19 levels than AD (p = 0.0457). PRO-C19 could discriminate between NSCLC and healthy controls (AUROC:0.749 and 0.826 for AD and SCC, respectively) and maintained discriminatory performance in patients of tumor stages I+II (AUROC:0.733 and 0.818 for AD and SCC, respectively). Lastly, we confirmed the elevated type XIX collagen levels using gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) initiatives. In conclusion, type XIX collagen is released into circulation and is significantly elevated in the serum of cancer patients and PRO-C19 shows promise as a cancer biomarker
    • …
    corecore