7 research outputs found

    Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Get PDF
    BACKGROUND: Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. RESULTS: All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. CONCLUSION: Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA

    Development of a modified lymphocyte transformation test for diagnosing drug-induced liver injury associated with an adaptive immune response

    Get PDF
    Drug-induced liver injury (DILI) is a growing problem. Diagnostic methods to differentiate DILI caused by an adaptive immune response from liver injury of other causes or to identify the responsible drug in patients receiving multiple drugs, herbals and/or dietary supplements (polypharmacy) have not yet been established. The lymphocyte transformation test (LTT) has been proposed as a diagnostic method to determine if a subject with an apparent hypersensitivity reaction has become sensitized to a specific drug. In this test, peripheral blood mononuclear cells (PBMC) collected from a subject are incubated with drug(s) suspected of causing the reaction. Cell proliferation, measured by the incorporation of [3H]-thymidine into new DNA, is considered evidence of a drug-specific immune response. The objectives of the current studies were to: (1) develop and optimize a modified version of the LTT (mLTT) and (2) investigate the feasibility of using the mLTT for diagnosing DILI associated with an adaptive immune response and identifying the responsible drug. PBMC collected from donors with a history of drug hypersensitivity reactions to specific drugs (manifested as skin rash) were used as positive controls for assay optimization. Following optimization, samples collected from 24 subjects enrolled in the U.S. Drug-Induced Liver Injury Network (DILIN) were tested in the mLTT. Using cytokine and granzyme B production as the primary endpoints to demonstrate lymphocyte sensitization to a specific drug, most samples from the DILIN subjects failed to respond. However, robust positive mLTT responses were observed for two of four samples from three DILIN subjects with hepatitis due to isoniazid (INH). We conclude that the mLTT, as performed here on frozen and thawed PBMC, is not a reliable test for diagnosing DILI caused by all drugs, but that it may be useful for confirming the role of the adaptive immune response in DILI ascribed to INH

    Genome sequencing in open microfabricated high-density picoliter reactors

    No full text
    We describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel 60×60 mm 2 fibreoptic slide containing 1,600,000 individual wells and is able to sequence 25 million bases, at 99 % or better accuracy (phred 20), in a 4 hour run. To provide sequencing templates, we clonally amplify DNA fragments on beads in the droplets of an emulsion. The template-carrying beads are loaded into the wells to convert each into a picoliter-scale sequencing reactor. We perform sequencing by synthesis using a pyrosequencing protocol optimized for solid support and the small dimensio
    corecore