339 research outputs found

    Foreword

    Get PDF

    Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensin

    Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers

    California\u27s Unique Approach to Arbitration: Why This Road Less Traveled Will Make All the Difference on the Issue of Preemption under the Federal Arbitration Act

    Get PDF
    We begin this article by framing the issue in simple terms. The statute itself is clear. The FAA contains a savings clause that provides that arbitration agreements shall be valid, irrevocable, and enforceable, save upon such grounds as exist at law or in equity for the revocation of any contract. , By its terms, the FAA permits courts to refuse to enforce arbitration agreements if the agreement is invalid under state laws that arose to govern issues concerning the validity, revocability, and enforceability of contracts generally

    Research Reports: 1989 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague

    Research reports: 1987 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 23rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period 1 June to 7 August 1987. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the Office of University Affairs, NASA Headquarters, Washington, D.C. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. This document is a compilation of Fellow's reports on their research during the Summer of 1987

    Handling Trajectory Uncertainties for Airborne Conflict Management

    Get PDF
    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers

    Dynamic Obstacle Avoidance

    Get PDF
    Report on the methodology and results of experimental software development in order to produce an efficient and effective mechanism whereby entities controlled by computer generated forces systems can avoid collisions with other moving entities within a distributed interactive simulation environment
    • …
    corecore