25 research outputs found
Ion Temperature Fluctuations in ELMy H-mode of the X3 EC-heated Plasmas on TCV
This paper focuses on interpreting variations in the NPA measured energy distribution of neutral fluxes from the TCV high density H-mode plasma discharges with strong third harmonic electron cyclotron heating (P_{X3}>P_{\Omega}). Two quasi-stationary regimes: ELMy H-mode and ELM-free H-mode, routinely and reproducibly obtained in TCV, with a plasma density 5â10Ă10^{19} m^{â3}, electron temperature 2â3 keV and ion temperature of 0.7â1.0 keV. The ELMy X3-heated H-mode plasma on TCV is significantly perturbed by ELMs, sawteeth activity and modes. In X3-heated plasmas ELMs are characterised by increased amplitudes and lower frequencies than are typical in ohmic H-modes with strong sawteeth synchronised with ELM cycle. The energy losses per ELM can exceed the 15% of the total stored energy and the plasma density and electron temperature profiles were resolved during the ELM cycle. NPA measurements in the presence of ELMs and sawteeth cannot be explained with the classical theory of two-body Coulomb electron-ion collisions alone. Additional effects (such as a modification of the ion temperature radial profile and/or ion redistribution in the coordinate and velocity space due to plasma perturbations) must be considered
Results from recent detachment experiments in alternative divertor configurations on TCV
Divertor detachment is explored on the TCV tokamak in alternative magnetic geometries. Starting from typical TCV single-null shapes, the poloidal flux expansion at the outer strikepoint is varied by a factor of 10 to investigate the X-divertor characteristics, and the total flux expansion is varied by 70% to study the properties of the super-X divertor. The effect of an additional X-point near the target is investigated in X-point target divertors. Detachment of the outer target is studied in these plasmas during Ohmic density ramps and with the ion âB drift away from the primary X-point. The detachment threshold, depth of detachment, and the stability of the radiation location are investigated using target measurements from the wall-embedded Langmuir probes and two-dimensional CIII line emissivity profiles across the divertor region, obtained from inverted, toroidally-integrated camera data. It is found that increasing poloidal flux expansion results in a deeper detachment for a given line-averaged density and a reduction in the radiation location sensitivity to core density, while no large effect on the detachment threshold is observed. The total flux expansion, contrary to expectations, does not show a significant influence on any detachment characteristics in these experiments. In X-point target geometries, no evidence is found for a reduced detachment threshold despite a 2-3 fold increase in connection length. A reduced radiation location sensitivity to core plasma density in the vicinity of the target X-point is suggested by the measurements
The diagnostic neutral beam injector with arc-discharge plasma source on the TCV Tokamak
The diagnostic neutral beam injector (DNBI) together with a charge exchange recombination spectroscopy (CXRS) system has been used on the TCV Tokamak as a diagnostic tool for local measurements of plasma ion temperature, velocity and carbon impurity density based on analysis of the beam induced impurity radiation emission since 2000. To improve the performance of the CXRS diagnostic, several upgrades of both the optical system and the neutral beam were performed. An increase of the plasma source size together with beam optimization in 2003 resulted in a twofold increase the beam current. The RF plasma generator was replaced by an arc-discharge plasma source together with a new ion optical system (IOS) in 2006 and subsequent beam optimization is presented herein. This was designed to increase the line brightness of the beam in the CXRS observation region without increasing of the injected power (to avoid plasma perturbation by the beam). The beam characteristics are measured by a multi-chord scanning of Doppler-shifted Hα emission, thermal measurements on a movable calorimeter and visible optical measurements inside the Tokamak vessel