406 research outputs found

    Scattering and Trapping of Nonlinear Schroedinger Solitons in External Potentials

    Full text link
    Soliton motion in some external potentials is studied using the nonlinear Schr\"odinger equation. Solitons are scattered by a potential wall. Solitons propagate almost freely or are trapped in a periodic potential. The critical kinetic energy for reflection and trapping is evaluated approximately with a variational method.Comment: 9 pages, 7 figure

    Nonlinear Schr\"odinger Equation with Spatio-Temporal Perturbations

    Get PDF
    We investigate the dynamics of solitons of the cubic Nonlinear Schr\"odinger Equation (NLSE) with the following perturbations: non-parametric spatio-temporal driving of the form f(x,t)=aexp[iK(t)x]f(x,t) = a \exp[i K(t) x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a Collective-Coordinate-Theory which yields a set of ODEs for our four collective coordinates. These ODEs are solved analytically and numerically for the case of a constant, spatially periodic force f(x)f(x). The soliton position exhibits oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the oscillations is much smaller than the period of f(x)f(x). In order to find out for which regions the above solutions are stable, we calculate the time evolution of the soliton momentum P(t)P(t) and soliton velocity V(t)V(t): This is a parameter representation of a curve P(V)P(V) which is visited by the soliton while time evolves. Our conjecture is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is.Comment: 21 figure

    New features of modulational instability of partially coherent light; importance of the incoherence spectrum

    Full text link
    It is shown that the properties of the modulational instability of partially coherent waves propagating in a nonlinear Kerr medium depend crucially on the profile of the incoherent field spectrum. Under certain conditions, the incoherence may even enhance, rather than suppress, the instability. In particular, it is found that the range of modulationally unstable wave numbers does not necessarily decrease monotonously with increasing degree of incoherence and that the modulational instability may still exist even when long wavelength perturbations are stable.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Singularites in the Bousseneq equation and in the generalized KdV equation

    Full text link
    In this paper, two kinds of the exact singular solutions are obtained by the improved homogeneous balance (HB) method and a nonlinear transformation. The two exact solutions show that special singular wave patterns exists in the classical model of some nonlinear wave problems

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    Shock waves in the dissipative Toda lattice

    Full text link
    We consider the propagation of a shock wave (SW) in the damped Toda lattice. The SW is a moving boundary between two semi-infinite lattice domains with different densities. A steadily moving SW may exist if the damping in the lattice is represented by an ``inner'' friction, which is a discrete analog of the second viscosity in hydrodynamics. The problem can be considered analytically in the continuum approximation, and the analysis produces an explicit relation between the SW's velocity and the densities of the two phases. Numerical simulations of the lattice equations of motion demonstrate that a stable SW establishes if the initial velocity is directed towards the less dense phase; in the opposite case, the wave gradually spreads out. The numerically found equilibrium velocity of the SW turns out to be in a very good agreement with the analytical formula even in a strongly discrete case. If the initial velocity is essentially different from the one determined by the densities (but has the correct sign), the velocity does not significantly alter, but instead the SW adjusts itself to the given velocity by sending another SW in the opposite direction.Comment: 10 pages in LaTeX, 5 figures available upon regues

    Adiabatic Compression of Soliton Matter Waves

    Full text link
    The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.

    Instability and Evolution of Nonlinearly Interacting Water Waves

    Full text link
    We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schroedinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large amplitude freak waves in deep water.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Variational approximation and the use of collective coordinates

    Get PDF
    We consider propagating, spatially localized waves in a class of equations that contain variational and nonvariational terms. The dynamics of the waves is analyzed through a collective coordinate approach. Motivated by the variational approximation, we show that there is a natural choice of projection onto collective variables for reducing the governing (nonlinear) partial differential equation (PDE) to coupled ordinary differential equations (ODEs). This projection produces ODEs whose solutions are exactly the stationary states of the effective Lagrangian that would be considered in applying the variational approximation method. We illustrate our approach by applying it to a modified Fisher equation for a traveling front, containing a non-constant-coefficient nonlinear term. We present numerical results that show that our proposed projection captures both the equilibria and the dynamics of the PDE much more closely than previously proposed projections. © 2013 American Physical Society

    Compactons in PT-symmetric generalized Korteweg-de Vries Equations

    Get PDF
    In an earlier paper Cooper, Shepard, and Sodano introduced a generalized KdV equation that can exhibit the kinds of compacton solitary waves that were first seen in equations studied by Rosenau and Hyman. This paper considers the PT-symmetric extensions of the equations examined by Cooper, Shepard, and Sodano. From the scaling properties of the PT-symmetric equations a general theorem relating the energy, momentum, and velocity of any solitary-wave solution of the generalized KdV equation is derived, and it is shown that the velocity of the solitons is determined by their amplitude, width, and momentum.Comment: 12 pages, 5 figure
    corecore