387 research outputs found

    Surface roughening during low temperature Si(100) epitaxy

    Full text link
    Reflection high energy electron diffraction (RHEED) was used to investigate surface roughening during low temperature Si(100) homoepitaxy. The use of RHEED allowed in situ real-time collection of structural information from the growth surface. RHEED patterns were analyzed using a simple kinematic diffraction model which related average surface roughness and average in-plane coherence lengths to the lengths and widths of individual RHEED diffraction features, respectively. These RHEED analyses were quantified by calibrating against cross-section transmission electron microscopy (TEM) analyses of surface roughening. Both the RHEED and TEM analyses revealed similar scaling of surface roughness with deposited thickness, with RHEED analyses resulting in roughness values a factor of ∼2 times lower than those obtained from TEM analyses. RHEED was then used to analyze surface roughening during Si(100) homoepitaxial growth in a range of temperatures, 200–275 °C. Initially, surface roughness increased linearly with deposited thickness at a roughening rate that decreased with increasing growth temperature. At each growth temperature, near the crystalline/amorphous Si phase transition, the rate of surface roughening decreased. This decrease coincided with the formation of facets and twins along Si{111} planes. Surface roughness eventually saturated at a value which followed an Arrhenius relation with temperature Eact ∼ 0.31±0.1Eact∼0.31±0.1 eV. This activation energy agrees well with the activation energy for the crystalline/amorphous Si phase transition, Eact ∼ 0.35Eact∼0.35 eV, and suggests that limited thickness epitaxy is characterized by this saturation roughness. Once the saturation roughness was reached, no significant changes in surface roughness were detected. In addition, the decay of average in-plane coherence lengths was also temperature dependent. Values of average coherence lengths, at the crystalline/amorphous Si phase transition, also increased with growth temperature. All of these data are consistent with a model that links surface roughening to the formation of critically sized Si{100} facets and the eventual breakdown in crystalline growth. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70948/2/JAPIAU-82-3-1157-1.pd

    Growth anisotropy and self-shadowing: A model for the development of in-plane texture during polycrystalline thin-film growth

    Full text link
    The development of a preferred crystallographic orientation in the plane of growth, an in-plane texture, is addressed in a model that incorporates anisotropic growth rates of a material and self-shadowing. Most crystalline materials exhibit fast growth along certain crystallographic directions and slow growth along others. This crystallographic growth anisotropy, which may be due to differences in surface free energy and surface diffusion, leads to the evolution of specific grain shapes in a material. In addition, self-shadowing due to an obliquely incident deposition flux leads to a variation in in-plane grain growth rates, where the “fast” growth direction is normal to the plane defined by the substrate normal and the incident flux direction. This geometric growth anisotropy leads to the formation of elongated grains in the plane of growth. Neither growth anisotropy alone can explain the development of an in-plane texture during polycrystalline thin-film growth. However, whenever both are present (i.e., oblique incidence deposition of anisotropic materials), an in-plane texture will develop. Grains that have “fast” crystallographic growth directions aligned with the “fast” geometric growth direction overgrow grains that do not exhibit this alignment. Furthermore, the rate of texturing increases with the degree of each anisotropy. This model was used to simulate in-plane texturing during thin-film deposition. The simulation results are in excellent quantitative agreement with recent experimental results concerning the development of in-plane texture in sputter deposited Mo films. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71031/2/JAPIAU-82-3-1397-1.pd

    Combined transmission electron microscopy and x‐ray study of the microstructure and texture in sputtered Mo films

    Full text link
    The microstructure and texture of thin Mo films sputtered onto the native oxide of Si(100) wafers were investigated with both conventional reflection x‐ray pole figures, and transmission electron microscopy and diffraction. Films were grown at two deposition rates (powers), 34 nm/min (1.5 kW) and 67 nm/min (3.9 kW), onto both moving and stationary substrates, under otherwise identical experimental conditions. The microstructure of the Mo films evolved into a zone 2 microstructure within the first 2 μm of growth. The development of both out‐of‐plane and in‐plane textures was found to be influenced by deposition rate and geometry. Films grown at the lower deposition rate exhibited predominantly {110} textures, while films grown at the higher rate exhibited predominantly {110} textures up to a film thickness of ∼0.5 μm and {111} textures above a film thickness of ∼1 μm. Films with the {110} textures developed grains with elongated footprints and faceted surfaces, while films with the {111} textures developed grains with elongated triangular footprints and faceted surfaces. In all of the films deposited onto moving substrates, an alignment of the grains normal to the tangent plane (defined by the substrate normal and the direction of platen rotation) was observed. In all of the films deposited onto stationary substrates, the development of an in‐plane texture was suppressed. These results suggest that a combination of geometric, energetic, and kinetic mechanisms are contributing to the evolution of the microstructure and texture in the Mo films.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70000/2/JAPIAU-76-8-4610-1.pd

    3D freeform surfaces from planar sketches using neural networks

    Get PDF
    A novel intelligent approach into 3D freeform surface reconstruction from planar sketches is proposed. A multilayer perceptron (MLP) neural network is employed to induce 3D freeform surfaces from planar freehand curves. Planar curves were used to represent the boundaries of a freeform surface patch. The curves were varied iteratively and sampled to produce training data to train and test the neural network. The obtained results demonstrate that the network successfully learned the inverse-projection map and correctly inferred the respective surfaces from fresh curves

    Structural investigation of Fe silicide films grown by pulsed laser deposition

    Full text link
    Pulsed laser deposition was used to grow epitaxial β‐FeSi2 films on Si(111) (1×1) and Si(111) (7×7) with the following epitaxial orientations: β‐FeSi2(001)//Si(111) with β‐FeSi2[010]//Si〈110〉 and three rotational variants. Silicide growth was influenced by substrate temperature and deposition rate, but not by the structure of the starting surface. Films containing both β‐FeSi2 and FeSi were formed at low substrate temperatures and high deposition rates, while films containing only β‐FeSi2 were formed at higher substrate temperatures and lower deposition rates. FeSi grains had the following epitaxial relationship to the Si substrate, FeSi(111)//Si(111) with FeSi(110)//Si(112). The microstructure of the silicide films varied with film thickness, as did the roughness at the silicide/Si interface. These results suggest that an Fe‐rich environment was created during the growth of the silicide films.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70762/2/JAPIAU-76-4-2202-1.pd

    ПРОЕКТ ЕНЕРГЕТИЧНОЇ БЕЗПЕКИ УКРАЇНИ НА ОСНОВІ ВЛАСНИХ ГЕОТЕРМАЛЬНИХ РЕСУРСІВ

    Get PDF
    The article presents the main components of energy and public safety through the development of geothermal resources in Ukraine. The development of geothermal resources is performed by geothermal power plants construction (GPPC) type, tube in tube "that do not require fuel resources, does not produce harmful emissions into the environment and are able to provide all spheres of society own thermal and electrical energy in sufficient amount. The data from the GPPC theory and technology of construction, industrial feasibility, socio-economic and ecological effectiveness are presented.В статті наведені основні складові енергетичної і екологічної безпеки суспільства на основі освоєння геотермальних ресурсів України. Освоєння геотермальних ресурсів виконується шляхом спорудження геотермальних енергоустановок (ГТЕУ) типу ,,труба в трубі”, що не потребують паливних ресурсів, не виробляють шкідливих викидів у довкілля і здатні забезпечити всі сфери діяльності суспільства власною тепловою і електричною енергією в достатній кількості. Наведені відомості з теорії ГТЕУ, техніки і технології їх спорудження, промислової доцільності, соціально-економічної та екологічної ефективності
    corecore