3,437 research outputs found

    Product Integral Representations of Wilson Lines and Wilson Loops, and Non-Abelian Stokes Theorem

    Get PDF
    We make use of product integrals to provide an unambiguous mathematical representation of Wilson line and Wilson loop operators. Then, drawing upon various properties of product integrals, we discuss such properties of these operators as approximating them with partial sums, their convergence, and their behavior under gauge transformations. We also obtain a surface product integral representation for the Wilson loop operator. The result can be interpreted as the non-abelian version of Stokes theorem.Comment: 20 pages, LaTe

    A preliminary shield design for a SNAP-8 power system

    Get PDF
    A preliminary shield design for a nuclear power system utilizing a SNAP-8 reactor for space base application is presented. A representative space base configuration was selected to set the geometry constraints imposed on the design. The base utilizes two independent power packages each with a reactor operating at 600 kwt and each producing about 50 kwe. The crew compartment is located about 200 feet from each reactor and is large enough in extent to intercept a total shadow angle of 60 deg measured about the center line of each reactor

    Complex-linear invariants of biochemical networks

    Get PDF
    The nonlinearities found in molecular networks usually prevent mathematical analysis of network behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems of parameter determination. However, molecular networks give rise, through mass-action kinetics, to polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These equations may be analysed by algebraic methods, in which parameters are treated as symbolic expressions whose numerical values do not have to be known in advance. For instance, an "invariant" of a network is a polynomial expression on selected state variables that vanishes in any steady state. Invariants have been found that encode key network properties and that discriminate between different network structures. Although invariants may be calculated by computational algebraic methods, such as Gr\"obner bases, these become computationally infeasible for biologically realistic networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are linear combinations of "complexes", or the monomials coming from mass action. We show how this procedure can be used in proving earlier results of Horn and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose networks have deficiencies up to four. We show that bifunctionality leads to different forms of concentration control that are robust to changes in initial conditions or total amounts. Finally, we outline a systematic procedure for using complex-linear invariants to analyse molecular networks of any deficiency.Comment: 36 pages, 6 figure

    Towards Work-Efficient Parallel Parameterized Algorithms

    Full text link
    Parallel parameterized complexity theory studies how fixed-parameter tractable (fpt) problems can be solved in parallel. Previous theoretical work focused on parallel algorithms that are very fast in principle, but did not take into account that when we only have a small number of processors (between 2 and, say, 1024), it is more important that the parallel algorithms are work-efficient. In the present paper we investigate how work-efficient fpt algorithms can be designed. We review standard methods from fpt theory, like kernelization, search trees, and interleaving, and prove trade-offs for them between work efficiency and runtime improvements. This results in a toolbox for developing work-efficient parallel fpt algorithms.Comment: Prior full version of the paper that will appear in Proceedings of the 13th International Conference and Workshops on Algorithms and Computation (WALCOM 2019), February 27 - March 02, 2019, Guwahati, India. The final authenticated version is available online at https://doi.org/10.1007/978-3-030-10564-8_2

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Random Tensors and Planted Cliques

    Full text link
    The r-parity tensor of a graph is a generalization of the adjacency matrix, where the tensor's entries denote the parity of the number of edges in subgraphs induced by r distinct vertices. For r=2, it is the adjacency matrix with 1's for edges and -1's for nonedges. It is well-known that the 2-norm of the adjacency matrix of a random graph is O(\sqrt{n}). Here we show that the 2-norm of the r-parity tensor is at most f(r)\sqrt{n}\log^{O(r)}n, answering a question of Frieze and Kannan who proved this for r=3. As a consequence, we get a tight connection between the planted clique problem and the problem of finding a vector that approximates the 2-norm of the r-parity tensor of a random graph. Our proof method is based on an inductive application of concentration of measure

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201
    corecore