209 research outputs found
Therapeutic Enhancement of Protective Immunity during Experimental Leishmaniasis
Leishmaniasis is an infectious disease that causes a large burden of morbidity and mortality in the tropics. Caused by protozoan parasites of the genus Leishmania that are transmitted by sandflies, leishmaniasis causes a wide spectrum of human disease. The severe end of the spectrum, visceral leishmaniasis, causes an annual mortality of approximately 50,000, largely in India and Sudan. Available therapies for leishmaniasis are problematic due to emerging drug resistance, toxicity and/or the need for lengthy courses of treatment. There is thus an urgent need for novel therapeutic approaches to this neglected tropical disease. To address this problem, the authors examined whether a commercially available drug developed for cancer therapy (Ontak), reported to have immunological activity of relevance to the immunobiology of Leishmania infection, exhibited efficacy in mouse models of leishmaniasis. The study found therapeutic efficacy for the drug alone in these models, as well as additive therapeutic efficacy in combination with standard antimicrobial therapy. Rational reinvestigation of the efficacy of already approved drugs in experimental models of neglected tropical diseases has promise in providing needed new candidates to the drug discovery pipeline
Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection
Commensal bacteria impact host health and immunity through various mechanisms, including the production of immunomodulatory molecules. Bacteroides fragilis produces a capsular polysaccharide (PSA), which induces regulatory T cells and mucosal tolerance. However, unlike pathogens, which employ secretion systems, the mechanisms by which commensal bacteria deliver molecules to the host remain unknown. We reveal that Bacteroides fragilis releases PSA in outer membrane vesicles (OMVs) that induce immunomodulatory effects and prevent experimental colitis. Dendritic cells (DCs) sense OMV-associated PSA through TLR2, resulting in enhanced regulatory T cells and anti-inflammatory cytokine production. OMV-induced signaling in DCs requires growth arrest and DNA-damage-inducible protein (Gadd45α). DCs treated with PSA-containing OMVs prevent experimental colitis, whereas Gadd45α^(−/−) DCs are unable to promote regulatory T cell responses or suppress proinflammatory cytokine production and host pathology. These findings demonstrate that OMV-mediated delivery of a commensal molecule prevents disease, uncovering a mechanism of interkingdom communication between the microbiota and mammals
Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6
Innate immune signaling is critical for the development of protective immunity. Such signaling is, perforce, tightly controlled. Lipoxins (LXs) are eicosanoid mediators that play key counterregulatory roles during infection. The molecular mechanisms underlying LX-mediated control of innate immune signaling are of interest. In this study, we show that LX and aspirin (ASA)-triggered LX (ATL) inhibit innate immune signaling by inducing suppressor of cytokine signaling (SOCS) 2–dependent ubiquitinylation and proteasome-mediated degradation of TNF receptor–associated factor (TRAF) 2 and TRAF6, which are adaptor molecules that couple TNF and interleukin-1 receptor/Toll-like receptor family members to intracellular signaling events. LX-mediated degradation of TRAF6 inhibits proinflammatory cytokine production by dendritic cells. This restraint of innate immune signaling can be ablated by inhibition of proteasome function. In vivo, this leads to dysregulated immune responses, accompanied by increased mortality during infection. Proteasomal degradation of TRAF6 is a central mechanism underlying LX-driven immune counterregulation, and a hitherto unappreciated mechanism of action of ASA. These findings suggest a new molecular target for drug development for diseases marked by dysregulated inflammatory responses
Exceptional collections and D-branes probing toric singularities
We demonstrate that a strongly exceptional collection on a singular toric
surface can be used to derive the gauge theory on a stack of D3-branes probing
the Calabi-Yau singularity caused by the surface shrinking to zero size. A
strongly exceptional collection, i.e., an ordered set of sheaves satisfying
special mapping properties, gives a convenient basis of D-branes. We find such
collections and analyze the gauge theories for weighted projective spaces, and
many of the Y^{p,q} and L^{p,q,r} spaces. In particular, we prove the strong
exceptionality for all p in the Y^{p,p-1} case, and similarly for the
Y^{p,p-2r} case.Comment: 49 pages, 6 figures; v2 refs added; v3 published versio
A Role for Immune Complexes in Enhanced Respiratory Syncytial Virus Disease
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children. Administration of a formalin inactivated vaccine against RSV to children in the 1960s resulted in increased morbidity and mortality in vaccine recipients who subsequently contracted RSV. This incident precluded development of subunit RSV vaccines for infants for over 30 years, because the mechanism of illness was never clarified. An RSV vaccine for infants is still not available
T cell derived IL-10 is dispensable for tolerance induction in a murine model of allergic airway inflammation
Regulatory mechanisms initiated by allergen specific immunotherapy are mainly attributed to T cell-derived IL-10. However, it has not been shown that T cell-derived IL-10 is required for successful tolerance induction. Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during tolerance induction in a murine model of allergic airway inflammation. While tolerance induction was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during tolerance induction were identified by using transcriptional reporter mice as T cells, B cells and to a lesser extent DCs. Interestingly, tolerance induction was still effective in mice with T cell-, B cell-, B and T cell- or DC-specific IL-10 deficiency. In contrast, tolerance induction was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow chimera that lacked IL-10 only in non-hematopoetic cells. Taken together, allergen specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells or even DCs, suggesting a high degree of cellular redundancy in IL-10 mediated tolerance
CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis
A single G protein–coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10hi (Tr1) and IL-4hi (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP- expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11
Association of acute myeloid leukemias most immature phenotype with risk groups and outcomes
The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the “gold standard” immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone’s most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34+CD38− leukemia cells. The CD34+CD38− leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34+CD38− hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34+CD38− leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34+ leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34+CD38− leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone’s most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for “clinically-relevant” leukemia stem cells. ClinicalTrials.gov: {"type":"clinical-trial","attrs":{"text":"NCT01349972","term_id":"NCT01349972"}}NCT01349972
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism
- …