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Abstract 

Regulatory mechanisms initiated by allergen specific immunotherapy are mainly 

attributed to T cell-derived IL-10. However, it has not been shown that T cell-derived 

IL-10 is required for successful tolerance induction. Here, we analyze cellular sources 

and the functional relevance of cell type specific IL-10 during tolerance induction in a 

murine model of allergic airway inflammation. While tolerance induction was effective 

in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely 

abrogated the beneficial effects. Cellular sources of IL-10 during tolerance induction 

were identified by using transcriptional reporter mice as T cells, B cells and to a 

lesser extent DCs. Interestingly, tolerance induction was still effective in mice with T 

cell-, B cell-, B and T cell- or DC-specific IL-10 deficiency. In contrast, tolerance 

induction was not possible in mice lacking IL-10 in all hematopoetic cells, while it was 

effective in bone marrow chimera that lacked IL-10 only in non-hematopoetic cells. 

Taken together, allergen specific tolerance depends on IL-10 from hematopoetic 

sources. The beneficial effects of allergen specific immunotherapy cannot solely be 

attributed to IL-10 from T cells, B cells or even DCs, suggesting a high degree of 

cellular redundancy in IL-10 mediated tolerance. 
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Introduction 

Adequate immune tolerance to harmless antigens is essential for immune 

homeostasis. Lack of tolerance and the ensuing inflammatory response to harmless 

environmental antigens is the hallmark of immediate type allergies such as allergic 

asthma [1]. In allergic individuals tolerance can at least partly be re-established 

through repeated administration of the relevant allergen, a procedure designated 

allergen specific immunotherapy (AIT) [2]. AIT is well established for the treatment of 

immediate type allergies and the underlying mechanisms have been extensively 

studied (reviewed in [3]). Many of the observed immune alterations during this 

process of tolerance induction (TI) have been attributed to IL-10 [4], a cytokine well 

known for its anti-inflammatory and immune regulatory capacity [5]. The relevance of 

IL-10 in AIT is supported by several studies that show an induction of IL-10 producing 

cells upon exposure to high allergen doses, an effect that is especially seen in 

different regulatory T cell subsets [6]–[10]. Additionally, increased numbers of IL-10 

producing B cells and monocytes in the peripheral blood of patients receiving bee 

venom AIT [6][11], as well as increased IL-10 signals co-localizing to mucosal 

macrophages in patients receiving pollen AIT [8] have been reported.  

Functional evidence for a role of IL-10 in AIT comes from a murine model of high 

dose TI, in which subcutaneous injections of OVA ameliorated the allergen induced 

airway inflammation in an IL-10 dependent manner [12]. More recent studies in mice 

suggest that T cells are essential for peripheral TI in the context of AIT, however, 

results vary in terms of the respective T cell subtype [13]–[15] and the experimental 

model [16]. The formal proof that T cell derived IL-10 is required for an effective AIT 

is still lacking.  

Aside from T cells, other cellular sources of IL-10 have been implied in TI. IL-10 

producing regulatory B cells have been described in allergy [17], autoimmune 
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diseases, helminth infection [18] and pregnancy [19]. DC derived IL-10 has been 

implied in long lasting allergen specific tolerance [20]; IL-10 from myeloid DCs, 

macrophages and non-hematopoetic sinusoidal endothelial cells appeared to 

contribute to tolerance in the liver [21] and mast cell derived IL-10 has been 

suggested to drive local tolerance in chronic bladder infection [22]. In conclusion, IL-

10 can be produced by a wide range of cell types from hematopoetic as well as non-

hematopoetic origin [5], many of which have been suggested to be involved in 

generating or maintaining tolerance in different experimental systems. 

In the present study we utilize IL-10 transcriptional reporter mice to monitor the 

cellular origin of IL-10 during TI in a mouse model of allergic airway inflammation. In 

addition, we analyze the functional relevance of cell type specific IL-10 during TI 

using cell type specific IL-10 deficient mice. We confirm that IL-10 is essential for 

successful TI but challenge the concept of T cell derived IL-10 as the critical cellular 

source: although allergen specific TI depends on IL-10 from hematopoetic sources, T 

cell specific IL-10 deficiency does not prevent TI, nor does B cell- or DC-specific IL-

10 deficiency.  
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Results 

Allergen specific tolerance induction is IL-10 depe ndent.  

As published previously for BALB/c mice [23] subcutaneous high dose allergen 

injection efficiently induced tolerance to subsequent allergen aerosol challenge also 

in C57BL/6 wildtype mice (for protocol see Supporting Information Fig. 1). Treatment 

with IL-10-receptor blocking antibody once before the first subcutaneous allergen 

application abrogated the beneficial effects of TI as shown by a prominent lung 

inflammation, increased allergen specific IgE and enhanced Th2 cytokine responses 

of draining LN cells upon allergen challenge (Supporting Information Fig. 2A-D). 

Similarly, tolerance induction did not reduce allergen induced inflammatory infiltration 

of the bronchoalveolar space in IL-10 knock out mice (Supporting Information Fig. 

2E). In conclusion, allergen specific TI was highly effective in C57BL/6 mice and the 

beneficial effect depends on IL-10.  

 

IL-10 expression during tolerance induction measura bly increases in T cells 

and B cells.  

Use of IL-10 transcriptional reporter mice (Vert-X) [24] enabled us to address cellular 

sources, kinetics and localization of in vivo IL-10 transcription during TI. Vert-X mice 

were sensitized and subjected to s.c. immunotherapy. Green fluorescent protein 

(GFP) expression that served as IL-10 transcriptional reporter was analyzed by flow 

cytometry.  

IL-10 reporter expression was quantified in all viable cells of different organs at 

different time points after initiation of immunotherapy. S.c. allergen injections 

increased the percentage of cells with IL-10 transcription as well as the IL-10 

expression level in skin draining axillary LNs and lung draining mediastinal LNs, 

which was most evident 132 hours after initiation of therapy, i.e. 36 hours after final 
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injection (Fig. 1A). No significant induction of IL10 signal was observed in spleen, 

peripheral blood and bone marrow as compared to the sham injected control (Fig. 

1A).  

GFP expression of defined cell types during TI was analyzed at the time point of 

maximal GFP expression. Compared to sham injected controls, TI induced increased 

IL-10 signals in T cells and B cells of skin draining LNs (Fig. 1 B,C) and mediastinal 

LNs (Supporting Information Fig.4). Within the T cell compartment the highest 

percentages and expression level (MFI) of the IL-10 signal was observed in CD4+ 

CD25+ T cells, which was increased even further upon TI. Similarly, TI also increased 

IL-10 signals in CD4+ CD25- and CD8+ T cells as well as in CD19+ B cells, however at 

a lower expression level (Fig. 1B,C). Finally, comparable signals for IL-10 

transcription were also detected in DCs (CD11b+CD11chigh cells) (Fig. 1B,C), which 

however, were not significantly influenced by TI. GFP expression of NK cells, 

neutrophils, macrophages and mast cells was at the detection limit at baseline and 

unaltered upon TI (data not shown). 

IL-10 reporter expression was also analyzed during the allergen aerosol challenge in 

tolerized mice and sham injected controls comparing baseline GFP expression in the 

lung prior to first aerosol treatment (Supporting Information Fig. 5A) as well as GFP 

expression of BAL cells after aerosol inhalation (Supporting Information Fig. 54C). 

However, no significantly different GFP expression was observed between tolerized 

and non tolerized mice during the elicitation phase of allergic airway inflammation 

(Supporting Information Fig. 5) as baseline GFP expression did not differ and 

increased comparably in lung T and B cells of both groups after allergen challenge. 

However, tolerized mice displayed a slightly increased percentage of CD8+ T cells 

within the BAL cellular infiltrate (Supporting Information Fig. 5B).  
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In conclusion, induction of tolerance by s.c. allergen injections was accompanied by a 

significant increase in percentage and expression level of IL-10 transcribing T cells 

and B cells in skin draining LNs and in mediastinal LNs during the treatment phase.  

  

IL-10 deficiency of the adaptive immune system does  not prevent effective 

tolerance induction. 

The prominent IL-10 expression in T cells during TI prompted us to analyze the 

functional role of T cell derived IL-10 during this process using mice with a T cell 

specific deficiency of IL-10 generated by Cre mediated recombination (IL-10FL/FLCD4-

Cre+) [25]. T cell specific deletion of the IL-10 gene was confirmed by Southern blot 

(Supporting Information Fig. 6A). Upon sensitization and challenge IL-10FL/FLCD4-

Cre+ mice developed an allergic lung inflammation that was comparable to that of 

their Cre- littermate controls, with the exception of a more prominent neutrophil and 

less prominent eosinophil infiltration in the BAL (Fig. 2A). Also allergen specific IgE 

and IgG1 responses in serum (Fig. 2B) and Th2 cytokine responses of draining LN 

cells upon restimulation were comparable (Fig. 2C). Interestingly, induction of 

tolerance was equally effective in IL-10FL/FLCD4-Cre+ as documented by a reduced 

BAL cell infiltrate (Fig. 2A) and mucin staining in lung sections (Fig. 2D), reduced 

allergen specific IgE, increased allergen specific IgG1 (Fig. 2B) and a dampened Th2 

cytokine response of draining LN cells upon allergen stimulation in vitro (Fig. 2C). 

This data suggested that T cell derived IL-10 is dispensable for successful allergen 

specific TI in the present experimental setting. 

The observed induction of IL-10 transcription in B cells during TI and previous reports 

on B cell derived IL-10 in the regulation of adaptive immune responses [26], 

prompted us to analyze the functional role of B cell derived IL-10 in our model. For 

this we used mice with a B cell specific IL10 deficiency (IL-10FL/FLCD19-Cre+) and 
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confirmed the specific deletion by Southern blot (Supporting Information Fig. 6B). 

Upon sensitization and challenge IL-10FL/FLCD19-Cre+ mice developed an allergic 

lung inflammation that did not differ obviously from that of their Cre- littermate controls 

(Fig. 2E). Also allergen specific IgG1 responses (Fig. 2F) and Th2 cytokine 

responses of draining LN cells were comparable (Fig. 2G). In contrast, the allergen 

specific IgE response was increased in the absence of B cell derived IL-10. Again, 

induction of tolerance was equally effective in IL-10FL/FLCD19-Cre+ as documented by 

a reduced BAL cell infiltrate (Fig. 2E), reduced allergen specific IgE, increased 

allergen specific IgG1 (Fig. 2F) and a dampened Th2 cytokine response of draining 

LN cells upon allergen restimulation (Fig. 2G). This data suggested that also B cell 

derived IL-10 is dispensable for successful allergen specific TI in mice. 

Since it was conceivable that IL-10 deficiency of one cell type could be compensated 

by the IL-10 production of the other, we next generated mice with an IL-10 deficiency 

in both T and B cells (IL-10FL/FLCD4-Cre+CD19-Cre+), in which the deletion of the IL-

10 gene in both cell types was verified by Southern blot (Supporting Information Fig. 

6C). However, even in the absence of B and T cell derived IL-10 induction of 

tolerance finally led to a drop in BAL cell numbers (Supporting Information Fig. 7A), 

an increase in allergen specific IgG1 (Supporting Information Fig. 7B) and a declined 

Th2 response of local LN cells upon restimulation (Supporting Information Fig. 7C), 

while allergen specific IgE was not reduced by TI (Supporting Information Fig. 7B). 

Thus, despite the lack of both T cell as well as B cell derived IL-10, induction of 

tolerance was still possible in regard to the majority of parameters analyzed.  

In conclusion, these data suggest that IL-10 derived from cells of the adaptive 

immune system is no requirement for successful allergen specific TI in mice. 

 

Absence of DC derived IL-10 does not prevent effect ive tolerance induction. 
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The role of IL-10 derived from cells of the innate immune system was investigated by 

using DC specific IL-10 deficient mice (IL-10FL/FLCD11c-Cre+). Deletion of the IL-10 

gene in DCs was confirmed by Southern blot. As reported previously [27] the 

expression of Cre recombinase in CD11c-Cre+ mice is not restricted to CD11c+ DC 

populations but may also affect significant portions of other leukocyte populations 

such as B cells. In line with this we observed the deleted as well as the undeleted IL-

10 allele in B cells (Supporting Information Fig. 6D). In IL-10FL/FLCD11c-Cre+ mice 

allergen induced airway inflammation, specific IgE and IgG1 responses as well as 

cytokine responses of draining LN cells were comparable to that observed in Cre- 

littermate controls (Fig. 3A-C). Induction of tolerance in IL-10FL/FLCD11c-Cre+ mice 

was as effective as in Cre- littermate controls, as demonstrated by a reduction of BAL 

cell infiltrate (Fig. 3A), drop in total (Supporting Information Fig. 8) and allergen 

specific IgE and increase in sIgG1 (Fig. 3B) as well as reduction of Th2 cytokine 

responses in draining LNs (Fig. 3C). In conclusion, successful tolerance induction 

was possible also in the absence of DC derived IL-10.  

Similar results were obtained for mice with a macrophage/neutrophil (IL-10FL/FLLysM-

Cre+ [28]) or mast cell specific deletion of the IL-10 gene (IL-10FL/FLMcpt5-Cre+ [29]) 

(Supporting Information Fig. 9).    

 

IL-10 from hematopoetic, but not non-hematopoetic, cells is required for 

tolerance induction 

IL-10 production has also been attributed to non-hematopoetic cells such as 

keratinocytes and epithelial cells [5]. The influence of IL-10 derived from non- 

hematopoetic cells was analyzed using bone marrow chimeras, in which transfer of 

wild type donor cells into IL-10-/- recipients (B6�IL-10ko) allowed the generation of 

mice that lacked IL-10 in non-hematopoetic cells. Transfer of wildtype bone marrow 



 

11 
 

into wildtype recipients (B6�B6) served as controls. Despite the lack of IL-10 from 

non-hematopoetic sources the allergen induced airway inflammation and immune 

responses did not differ remarkably from control mice (Fig. 4). Tolerance induction 

was effective in both control mice (B6�B6) and mice with a deficiency of IL-10 in 

non-hematopoetic cells (B6�IL-10ko) as indicated by reduced cellular influx into the 

bronchoalveolar space (Fig. 4A), diminished allergen specific IgE (Fig. 4B), and 

reduced LN cytokine response upon in vitro restimulation (Fig. 4C).  

Finally, we analyzed whether IL-10 production of cells of hematopoetic origin 

contributes to successful tolerance induction using IL-10FL/FLVav-Cre+ mice, in which 

all hematopoetic cells are deficient in IL-10 [30]. At baseline IL-10FL/FLVav-Cre+ mice 

did not reveal any significant differences in T cell- (CD4+, CD8+ and CD4+CD25+), B 

cell- or DC-numbers in blood, axillary lymph nodes, spleen and lung tissue compared 

to IL-10wt/FLVav-Cre+ control mice (Supporting Information Fig. 10). While the 

magnitude of the allergen induced airway inflammation in IL-10FL/FLVav-Cre+ mice 

was comparable to Cre- control mice (Fig. 4D), the inflammation was dominated by 

infiltration of neutrophils (Fig. 4E). In contrast to Cre- controls, induction of tolerance 

was not effective in IL-10FL/FLVav-Cre+ mice, as documented by a persisting airway 

inflammation dominated by neutrophils (Fig. 4D,E). Correspondingly, TI in IL-

10FL/FLVav-Cre+ mice failed to reduce the Th2 cytokine production of draining LN cells 

upon allergen restimulation (Fig. 4G), while the amount of OVA-specific IgE was 

reduced upon TI in both groups (Fig. 4F) suggesting that humoral and cellular 

responses were regulated by independent pathways. In conclusion, the majority of 

parameters analysed suggests that IL-10 from hematopoietic cells is required for 

successful tolerance induction in allergen induced airway inflammation.  
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Discussion 

In the present study we used a murine model of high dose tolerance in allergen 

induced airway inflammation to investigate the functional role and cellular source of 

IL-10 during tolerance induction (TI). Our data confirm the previously reported 

functional involvement of IL-10 in TI, however challenge the concept of T cells as the 

crucial source of IL-10 responsible for immune tolerance.  

IL-10 reporter mice (Vert-X mice) [24] allowed us to monitor in vivo IL-10 transcription 

during different phases of allergen specific TI. IL-10 protein detection ex vivo is 

challenging [31] but IL-10 transcription has been demonstrated to be closely linked to 

IL-10 protein production in these mice [24]. Still the reporter mice only provide a 

surrogate signal for in vivo protein production. Induction of tolerance obtained by 

repeated subcutaneous injections of OVA was accompanied by significantly 

increased IL-10 transcription in skin draining and mediastinal LN cells but not in 

peripheral blood, bone marrow or spleen (Fig. 1). The prominent signal in mediastinal 

LN cells is most likely due to sensitization route via the peritoneum, which in mice 

predominantly drains to the mediastinal LNs [32]. At baseline, the strongest signal for 

IL-10 transcription was detected in CD4+CD25+ T cells, which is  in line with their 

regulatory function. Signals for IL-10 were also detectable in CD4+CD25- T cells, 

CD8+ T cells, B cells and DCs, albeit to a lesser extent. Initiation of tolerance 

increased IL-10 expression in both CD25+ and CD25- CD4+ cells, as well as in CD8+ 

T cells and CD19+ B cells but not in CD11c+ DCs. When analyzing the elicitation 

phase of allergic airway inflammation in lung and BAL no prominent differences 

between tolerized and sham treated mice were detected (Supporting Information 

Fig.5). The observations that IL-10 transcription was selectively induced primarily in T 

cells and B cells during the tolerization process (Fig. 1) and that blocking IL-10 prior 

to TI effectively abrogated the beneficial effects (Supporting Information Fig. 2), both 
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seemed to support the concept that T cell- or B cell-derived IL-10 or both may play a 

functional role in establishing tolerance. This concept was in line with previous 

studies that describe the induction of regulatory T cells and IL-10 producing CD4+ T 

cells following immunotherapy [14],[15],[33] and with adoptive transfer experiments, 

in which allergen-specific CD4+CD25+ T cells [14][34] or CD4+ T cells engineered to 

produce IL-10 [35] were demonstrated to suppress allergic airway inflammation. 

Interestingly, successful suppression of allergic airway inflammation was also 

possible by transfer of allergen specific CD4+CD25+ T cells from IL-10 deficient donor 

mice, suggesting that CD4+CD25+ regulatory cells can suppress the allergen induced 

inflammation in vivo but that IL-10 production by regulatory T cells themselves is not 

required [36]. More recently it has been suggested that the effectiveness of 

immunotherapy most probably relies on the induction of IL-10 in Foxp3- T cells by 

Foxp3+ regulatory T cells from thymic origin [13]. These studies seemed to suggest a 

close link between the effectiveness of allergen specific immunotherapy and T cell 

derived IL-10, however, the functional evidence provided in these studies was 

somewhat circumstantial.  

To address this issue in more detail we therefore made use of cell type specific IL-10 

deficient mice generated by Cre/loxP-mediated deletion. T cell specific IL-10 deficient 

mice have been reported to display increased T cell mediated immune responses in 

a murine contact hypersensitivity model, while responses to innate stimuli such as 

LPS or the skin irritant croton oil appeared to be normal [25]. Subsequent studies 

demonstrated that selective ablation of IL-10 in T cells resulted in an improved viral 

clearance in viral infection models [37],[38] and a reduced disease control in 

Leishmania infection [39]. The selective lack of IL-10 in T cells was associated with 

spontaneous development of colitis [25], similar to that observed in IL-10-/- mice. 

Similarly, selective ablation of IL-10 in Foxp3+ regulatory T cells was reported to lead 
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to spontaneous colitis and to an increased inflammatory response in a model of 

allergen induced inflammation of the lung [40].  

Based on these reports and the IL-10 expression pattern analyzed in IL-10 reporter 

mice, we expected to see an augmented allergen induced airway inflammation in IL-

10FL/FLCD4-Cre+ mice. To our surprise, the overall response to allergen challenge 

was comparable to that obtained in Cre- littermate controls (Fig. 2). The only 

exception was a more prominent neutrophil and less prominent eosinophil infiltration 

in the BAL of IL-10FL/FLCD4-Cre+ mice, suggesting a direct or indirect role of T cell 

derived IL-10 in the recruitment or survival of granulocytes (Fig. 2). In this line the 

inhibition of neutrophil migration due to plasmacytosis-associated overexpression of 

IL-10 points to a general effect of IL-10 on the recruitment of neutrophils [41]. 

However, selective deficiency in T cells (IL-10FL/FLCD4-Cre+) did not abrogate the 

beneficial effect of the tolerizing treatment (Fig. 2), suggesting that at least in the 

presently used model T cell derived IL-10 was dispensable for allergen specific 

tolerance induction.  

B cell derived IL-10 has also been implied in immune regulation in a number of 

different disease models [26]. A non-redundant role of B cell derived IL-10 has been 

reported in murine cytomegalovirus infection [24], in Salmonella infection [42] and in 

acute graft versus host disease [43]. However, using mice with a B cell specific IL-10 

deficiency (IL-10FL/FLCD19-Cre+) we did not obtain evidence for a functional 

involvement of B cell derived IL-10 on allergen specific TI. Similar to results observed 

in IL-10FL/FLCD4-Cre+ mice, B cell IL-10 deficiency did not alter the degree of allergic 

airway inflammation nor the protective effect of TI (Fig. 2). We only observed 

increased allergen specific IgE in IL-10FL/FLCD19-Cre+ in line with the known function 

of IL-10 on immunoglobulin production and class switching [5][44]. Since neither T 

cell specific nor B cell specific IL-10 deletion had a significant impact on TI, we 
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hypothesized that lack of IL-10 production by T cells could be compensated by B 

cells and vice versa. This however, could not be confirmed when analyzing mice with 

an IL-10 deficiency in both populations (IL-10FL/FLCD4-Cre+CD19-Cre+) (Supporting 

Information Fig.7). Successful TI despite the lack of IL-10 from cells of the adaptive 

immune system suggested that IL-10 from other sources may be involved in TI. Non-

redundant functions of IL-10 from myeloid cells have been reported in different 

disease models [38][45]–[47]. However, in our model IL-10 deficiency in DCs (IL-

10FL/FLCD11c-Cre+) (Fig. 3) had no functional impact on allergen specific TI. Other 

myeloid cells such as neutrophils, macrophages or mast cells are additional known 

sources of IL-10. But according to the lack of a significant up-regulation of IL-10 

transcription during TI in these populations, preliminary data from mice with an IL-10 

deficiency of those cell types did not point to a functional involvement of either 

macrophages/neutrophils or mast cells alone in the development of allergen specific 

tolerance (Supporting Information fig.9).   

Successful TI in mice with IL-10 deficiency in non-hematopoetic cells (Fig. 4A-C) but 

failure of TI in case of IL-10 deficiency in the hematopoetic system (IL-10FL/FLVav-

Cre+) (Fig. 4D-G) confirmed that the functionally relevant IL-10 is generated by 

hematopoetic cells. This combined with the observation that IL-10 deficiency of single 

cell populations (T cells, B cells, DCs, and presumably macrophages/neutrophils and 

mast cells) or a combination of cell populations (T cells + B cells) was not sufficient to 

have a major impact on the efficiency of TI, suggests either a functional redundancy 

of IL-10 from diverse hematopoetic sources or that IL-10 from different cellular source 

have to act together in an additive fashion to achieve the full biological activity 

required for successful allergen specific tolerance induction. Along these lines 

redundant functions of IL-10 from different cell sources have been discussed in 
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endotoxemia [24], and additive functions of T cell- and macrophage-derived IL-10 

have been suggested in viral chronicity [38].  

The mice studied were generated by Cre/loxP-mediated recombination which leads 

to a loss of cell type specific IL-10 throughout the ontogeny. This may lead to 

compensatory mechanisms which may not be adequately recognized and thus not 

taken into account when interpreting the data. Inducible Cre/loxP mediated 

recombination which allows temporal control of gene expression, may be necessary 

to dissect the full spectrum of cell type specific IL-10 functions during allergen 

specific tolerance induction.  

In conclusion, our data obtained in a murine model of high dose tolerance confirmed 

the need of IL-10 for a successful induction of allergen specific tolerance. In 

agreement with previous studies, IL-10 expression during immunotherapy was 

predominantly observed in T cells and to a lesser extent in B cells and DCs. 

Functional relevance for tolerance induction was confirmed in mice that lack IL-10 in 

hematopoetic cells. Cell type specific IL-10 deficient mice, however, revealed that 

neither T cell- nor B cell- or DC-derived IL-10 was exclusively required for successful 

TI and suggested a functional redundancy of IL-10 from different hematopoetic  

sources in this model. Studies that address the cellular target of IL-10 during the 

process of tolerance induction may provide additional insight on the mechanisms of 

IL-10 mediated immune regulation during allergen specific immunotherapy.  
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Materials and methods 

Animals  

All mice were bred at the Center for Experimental Models and Transgenic Services 

(CEMT-FR), Medical Center - University of Freiburg, and housed under specific 

pathogen free conditions. C57BL/6NCrl wildtype and the following strains on 

C57BL/6N (B6) background were used in age- and sex-matched groups for 

experiments: Vert-X (B6(Cg)-Il10tm1.1Karp) [24]; IL-10FL/FLCD4-Cre+ [25]; IL-

10FL/FLCD19-Cre+ [24]; IL-10FL/FLCD4-Cre+CD19-Cre+ (generated by crossing IL-10FL/F 

CD4-Cre+ x IL-10FL/FLCD19-Cre+); IL-10FL/FLCD11c-Cre+ [27]; IL-10FL/FLLysM-Cre+ [28]; 

IL-10FL/FLMcpt5-Cre+ [29]; IL-10FL/FLVav-Cre+ [30]; IL-10FL/FLCre- littermates; IL-10-/- 

[48]; B6.SJL-Ptprca Pepcb/BoyJ (B6.CD45.1). 

For the construction of bone marrow chimeras B6.CD45.2 IL-10-/- or wild type 

recipient mice were sublethally irradiated twice with 6 Gy at an interval of four hours. 

Subsequently, 5 x 106 bone marrow cells from B6.CD45.1 wild type mice were 

transferred via the tail vein. To allow complete chimerism and reconstitution 

(controlled by flow cytometric detection of CD54.1+ cells) at least 12 weeks were 

waited until the experiment was started [49].    

All of the experimental procedures were in accordance with institutional, state and 

federal guidelines on animal welfare. The animal experiments were approved by the 

Regierungspräsidium Freiburg and supervised by the animal protection 

representatives of the Medical Center - University of Freiburg. 

 

Southern blot  

Specific deletion of the IL-10 gene in defined cell populations (sorted with the help of 

immunostaining on a FACSAria, BD Biosciences, Heidelberg, Germany) was 

confirmed by Southern blot analysis as described previously [25]. 
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Induction of allergic airway inflammation, toleranc e induction and 

bronchoalveolar lavage (BAL) 

Mice were sensitized to ovalbumin (OVA) by repetitive intraperitoneal injections of 10 

µg OVA (Grade V, Sigma-Aldrich, Taufkirchen, Germany) adsorbed to 2 mg 

aluminiumhydroxide (Imject alum, Pierce, Rockford, USA) in PBS on days 0, 7, 14. 

Tolerance induction (TI) was conducted by three subcutaneous injections (neck) of 

OVA (1 mg in PBS) on three alternate days beginning at least 14 days after 

sensitization. Control animals received PBS injections instead. Mice were challenged 

7 to 14 days after the last injection by 1% OVA aerosol for 20 minutes three times 72 

hours apart. Animals were sacrificed and analyzed 24 hours after the last aerosol 

challenge (Supporting Information Fig. 1). BAL was performed as recently described 

[50]. The functional role of IL-10 during TI was assessed by a single intraperitoneal 

injection of an IL-10-receptor neutralizing antibody (clone 1B1.3a, 500 µg) 2-6 hours 

prior to tolerance induction. Rat Immunoglobulin G (Jackson ImmunoResearch 

Europe Ltd, Newmarket, UK) served as control.  

 

Flow cytometry 

Antibody staining was performed according to standard protocols for extracellular 

staining. Antibody binding was detected by using BD Canto (BD Biosciences) and 

analyzed with FlowJo software, version 9 (TreeStar Inc.). 4',6-diamidino-2-

phenylindole (DAPI) positive, dead cells were excluded from further analysis. 

Antibodies against CD3 (clone 145-2C11), CD4 (RM4-5), CD25 (PC61), CD8 (53-

6.7), CD19 (ID3), CD11b (M1/70), CD11c (N418), CD138 (281-2), NK1.1 (PK136), 

CD117 (2B8), FceRIα (MAR-1), SiglecF (E50-2440), GR-1 (RB6-8C5), CD5 (53-7.3) 

and CD1d (1B1) were purchased from BD Biosciences or eBioscience (San Diego, 
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USA). For the analysis of GFP expression corresponding antibody stained cells of 

wild type mice without reporter activity served as reference (Supporting Information 

Fig. 8). 

 

Cytokine production of lung draining lymph node cel ls and OVA-specific IgE 

and IgG1 detection 

Single-cell suspensions of mediastinal lymph nodes were cultured in the absence or 

presence of OVA (10 µg/ml) as recently described [51]. Supernatants were taken 

after five days of incubation and cytokine content was analyzed by ELISA using 

matched antibody pairs purchased from BD Biosciences (IL-5) and AbD Serotec, 

Kidlington, UK (IL-13). Assays were performed according to the manufacturer´s 

instructions. OVA-specific IgE and IgG1 concentrations were measured in serum 

samples by ELISA as described previously [50]. 

 

Histology 

Periodic-acid Schiff (PAS) staining of lung tissue was performed as described 

previously [50]. 

 

Statistical analysis 

Mann-Whitney U test was used for unpaired, nonparametric data (GraphPad Prism 

version 5.01, GraphPad Software, Inc, La Jolla, USA). Differences were considered 

significant when P-values were < 0.05. 
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Figure legends 

Figure 1: IL-10 reporter expression (GFP) in differ ent organs and cell types 

upon initiation of tolerance. 

Sensitized transcriptional IL-10 reporter mice (Vert-X) were either sham treated 

(sham) or tolerized (TI) by subcutaneous allergen injections as described in the 

Materials and methods. (A) Lymph nodes (LNs), spleen, bone marrow (BM) and 

blood were analysed at different time points upon the first subcutaneous allergen 

injection by flow cytometry for GFP expression in all viable cells of the respective 

organs. (B,C) Different cell populations of axillary LNs were analysed 132 hours after 

initiation of therapy, i.e. 36 hours after final injection by flow cytometry for reporter 

expression (GFP). (B) Representative dot plots upon sham treatment (upper panel) 

and TI (lower panel). (C) Percent GFP+ cells per indicated cell type (upper panel) and 

mean fluorescence intensity (lower panel). (A and C) Data are shown as mean ±SEM 

(n=3-6 mice/group and experiment) and are pooled from 4 independent experiments. 

* p<0.05, ** p<0.01, *** p<0.001, ns: not significant, Mann-Whitney U test. (B) Plots 

are representative of 4 independent experiments. 

 

Figure 2: Tolerance induction in mice with T cell o r B cell specific IL-10 

deficiency.  

(A-H) Sensitized (A-D) T cell specific (IL-10FL/FLCD4-Cre+) or (E-H) B cell specific IL-

10 deficient mice (IL-10FL/FLCD19-Cre+) and corresponding control litter mates (IL-

10FL/FLCre-) were sham treated (sham) or tolerized (TI) by subcutaneous injections, 

allergen challenged by aerosol treatment and analysed 24 hours later as described in 

the Materials and methods. (A,E) Immune cells in BAL fluid were counted on Diff-

Quick stained cytospins. (B,F) Serum levels of allergen-specific IgE and IgG1 were 

measured by ELISA. (C,G) IL-5 and IL-13 release by allergen-stimulated LN cells 
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was measured by ELISA. (D and H) Representative PAS-stained lung sections. 

Images shown are representative of 2 independent experiments. (A-C, E-G) Data are 

shown as mean +SEM (n=3-10 mice/group and experiment) and are pooled from  

from (A-C) 9 or (E-G) 6 independent experiments. * p<0.05, ** p<0.01, *** p<0.001; 

Mann-Whitney U test. 

 

Figure 3: Tolerance induction in mice with DC speci fic IL-10 deficiency.   

Sensitized DC-specific IL-10 deficient mice (IL-10FL/FLCD11c-Cre+) and control mice 

(IL-10FL/FLCre-) were sham treated (sham) or tolerized (TI) by subcutaneous 

injections, allergen challenged by aerosol treatment and analysed 24 hours later as 

described in the Materials and methods. (A) Immune cells in BAL fluid were counted 

on Diff-Quick stained cytospins. (B) Serum levels of allergen-specific IgE and IgG1 

were measured by ELISA. (C) IL-5 and IL-13 release by allergen-stimulated LN cells 

was measured by ELISA. (D) Representative PAS-stained lung sections. Images 

shown are representative of 2 independent experiments. (A-C) Data are shown as 

mean +SEM (n=6-7 mice/group and experiment) and are pooled from three 

independent experiments. * p<0.05, ** p<0.01, *** p<0.001, ns: not significant; Mann-

Whitney U test.  

 

Figure 4: Tolerance induction in mice with IL-10 de ficiency in either non-

hematopoetic or hematopoetic cells. 

(A-C) IL-10ko mice were irradiated and substituted with C57BL/6 wild type bone 

marrow (B6�10-/-; IL-10 deficiency in non-hematopoetic cells) as described in the 

Materials and methods. In parallel substituted wild type mice (B6�B6) served as 

control. (D-G) Mice with an IL-10 deficient hematopoetic system (IL-10FL/FLVav-Cre+) 

and control mice (IL-10FL/FLCre-). (A-G) All mice were sensitized, sham treated 



 

30 
 

(sham) or tolerized (TI) by subcutaneous injections, allergen challenged by aerosol 

treatment and analysed 24 hours later as described in the Materials and methods. 

(A,E) Immune cells in BAL fluid were counted on Diff-Quick stained cytospins. (D) 

Enumeration of total cells in BAL fluid. (B,F) Serum levels of allergen-specific IgE and 

IgG1 were measured by ELISA. (C,G) IL-5 and IL-13 release by allergen-stimulated 

LN cells were measured by ELISA. (A-G) Data are shown as mean +SEM (n=4-6 

mice/group and experiment) and are pooled from (A-C) 2 or (D-G) 4 independent 

experiments. * p<0.05, ** p<0.01, *** p<0.001, ns: not significant; Mann Whitney U 

test. 
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Supporting information Figure 1:
Standard protocol for sensitization, tolerance induction and
allergen challenge.
Mice were sensitized to ovalbumin (OVA) by repetitive
intraperitoneal injections of OVA adsorbed to
aluminiumhydroxide (alum) on days 0, 7 and 14. Tolerance
induction was conducted by three subcutaneous injections of
OVA on three alternate days beginning at least 14 days after
sensitization. Control animals received PBS injections instead.
Mice were challenged 7 to 10 days after the last injection by
OVA aerosol three times 72 hours apart. Animals were
sacrificed and analyzed 24 hours after the last aerosol
challenge.
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Supporting information Figure 2:
IL-10 dependent beneficial effect of allergen specific TI in
C57BL/6 wild type mice.
(A-D) Sensitized C57BL/6 wildtype mice treated with IL-10R
blocking or isotype control antibody and (E) IL-10 knock-out
mice (IL-10-/-) were either sham treated (sham) or tolerized (TI)
by s.c. allergen injections and analysed 24 hours after final
allergen challenge as described in the Materials and methods.
(A,E) Immune cells in BAL fluid were counted on Diff-Quick
stained cytospins. (B) Serum levels of allergen-specific IgE and
IgG1 were measured by ELISA. (C) IL-5 and IL-13 release by
allergen-stimulated LN cells was measured by ELISA. (D) PAS-
stained lung sections. Images shown are representative of 2
independent experiments. (A-E) Data are shown as mean+SEM
(n=3-8 mice/group and experiment) and are pooled from (A-C) 7
or (E) 2 independent experiments. * p<0.05, *** p<0.001, ns: not
significant; Mann- Whitney U test.
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Supporting information Figure 3:
Flow cytometry gating strategy for determination of GFP+

immune cells.
(A) Definition of distinct cell populations. (B) Analysis of GFP
expression by comparing wildtype and IL-10 reporter mice
(Vert-X).
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Supporting information Figure 4:
IL-10 reporter expression (GFP) in different cell types of
mediastinal LNs upon initiation of tolerance.
Sensitized transcriptional IL-10 reporter mice (Vert-X) were
either sham treated (sham) or tolerized (TI) by s.c. allergen
injections as described in the Materials and methods. Different
cell populations of mediastinal LNs were analysed 132 hours
after initiation of therapy, i.e. 36 hours after final injection by
flow cytometry for reporter expression (GFP). Percent GFP+
cells per indicated cell type (upper panel) and mean
fluorescence intensity (lower panel). Data are shown as mean
+SEM (n=3-6 mice/group and experiment) and are pooled from
4 independent experiments. * p<0.05, ** p<0.01, *** p<0.001,
ns: not significant Mann-Whitney U test.
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Supporting information Figure 5:
IL-10 expression levels in immune cells of lung tissue and
BAL during the elicitation phase of allergic airway
inflammation.
Sensitized transcriptional IL-10 reporter mice (Vert-X) were
sham treated (sham) or tolerized (TI) and allergen challenged
by aerosol treatment as described in the Materials and
methods. (A) Percentage of GFP expression (upper panel) and
mean fluorescence intensity (MFI, lower panel) of immune cells
in lung tissue before and 24 hours after the last allergen
challenge. Significance levels for the comparison of tolerized
and sham treated mice are displayed above a bracket.
Significance levels for the comparison before and after allergen
challenge are only displayed in the right panel above each
column. (B) T cell composition within BAL cells after allergen
challenge. (C) GFP expression of different BAL cell populations
after allergen challenge. Data are shown as mean+SEM (n=16-
24 mice/group) and are pooled from 4 independent
experiments. * p<0.05, ** p<0.01, *** p<0.001, ns: not significant
Mann-Whitney U test.
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Supporting information Figure 6:
Cell type specific deletion of the IL-10 gene in IL-10FL/FLCD4-
Cre+, IL-10FL/FLCD19-Cre+, IL-10FL/FLCD4-Cre+CD19-Cre+ and
IL-10FL/FLCD11c-Cre+ mice.
Southern blot analysis of DNA extracted from different FACS-
sorted spleen cell populations after PstI digest. (A-C) CD3+ T
cells and CD19+ B cells from (A) IL-10FL/FLCD4-Cre+, (B) IL-
10FL/FLCD19-Cre+ and (C) IL-10FL/FLCD4-Cre+CD19-Cre+ mice.
(D) CD11chighMHCII+ DCs and CD19+ B cells from IL-
10FL/FLCD11c-Cre+ mice. Data are representative of three
animals.
D: deleted allele, FL: loxP-flanked allele, T: T cells, B: B cells.
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Supporting information Figure 7:
Lack of T and B cell derived IL-10 does not prevent
tolerance induction.
Sensitized T and B cell specific IL-10 deficient mice (IL-
10FL/FLCD4-Cre+CD19-Cre+) and control mice (IL-10FL/FLCre-)
were sham treated (sham) or tolerized (TI) by s.c. injections,
allergen challenged by aerosol treatment and analysed 24
hours later as described in the Materials and methods. (A)
Immune cells in BAL fluid were counted on Diff-Quick stained
cytospins.(B) Serum levels of allergen-specific IgE and IgG1
were measured by ELISA. (C) IL-5 and IL-13 release by
allergen-stimulated LN cells was measured by ELISA. Data are
shown as mean +SEM (n=3-10 mice/group and experiment)
and are pooled from from (A) 5 or (B,C) 4 independent
experiments. * p<0.05, ** p<0.01, *** p<0.001; ns: not
significant, Mann-Whitney U test.
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Supporting information Figure 8:
Serum level of total IgE in mice with DC specific IL-10
deficiency
Sensitized DC specific IL-10 deficient mice (IL-10FL/FLCD11c-
Cre+) and control mice (IL-10FL/FLCre-) were sham treated
(sham) or tolerized (TI) by s.c. injections, allergen challenged by
aerosol treatment and analysed as described in the Materials
and methods. (A) Kinetic of total IgE levels and (B) total IgE 24
h after challenge (final) was determined by ELISA. Data are
shown as mean+SEM (n=6-7 mice/group and experiment) and
are pooled from 3 independent experiments. ** p<0.01, Mann-
Whitney U test.
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Supporting information Figure 9:
Lack of macrophage/neutrophil or mast cell derived IL-10
does not prevent tolerance induction.
Sensitized macrophage/neutrophil (IL-10FL/FLLysM-Cre+) or mast
cell (IL-10FL/FLMcpt5-Cre+) specific IL-10 deficient mice and
control mice (IL-10FL/FLCre-) were sham treated (sham) or
tolerized (TI) by s.c. injections, allergen challenged by aerosol
treatment and analysed 24 hours later as described in the
Materials and methods. (A) Immune cells in BAL fluid were
counted on Diff-Quick stained cytospins. (B) Serum levels of
allergen-specific IgE and IgG1 were measured by ELISA. (C) IL-
5 and IL-13 release by allergen-stimulated LN cells was
measured by ELISA. Data (n=5-6 mice/group) of 1 experiment
are shown as mean+SD. LysM: IL-10FL/FLLysM-Cre+ mice, Mcpt:
IL-10FL/FLMcpt5-Cre+mice, * p<0.05, ** p<0.01, ns: not
significant, Mann-Whitney U test.



Supporting information Figure 10:
Composition of significant immune cell populations in IL-
10FL/FLVav-Cre+ mice and litter mate controls.
Axillary lymph nodes (LN), spleen, lung tissue and blood of
naïve, 5 week old IL-10FL/FLVav-Cre+ mice and IL-10wt/FLVav-
Cre+ were analyzed by flow cytometry for total T cells (CD3+), B
cells (CD19+) and dendritic cells (DCs, CD11c+MHCII+) (left
panel), as well as for CD4+ and CD8+ T cells (middel panel) and
CD4+CD25+ T cells (right panel). Data are shown as
mean+SEM (n=2-3 mice/group and experiment) and are pooled
from from 2 independent experiments. ** p<0.01, Mann-
Whitney U test.
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 3 

Allergen specific tolerance induction prevents allergic airway inflammation even in 4 

absence of T cell-, B cell-, T+B cell- or DC-derived IL-10, but not in the absence of IL-10 5 

from all hematopoetic cells, nor when IL-10R is blocked. This suggests that diverse 6 

hematopoetic IL-10 sources contribute to tolerance induction in a redundant fashion.  7 


