7 research outputs found

    In Vitro Reconstitution of the Highly Active and Natively Folded Recombinant Human Superoxide Dismutase 1 Holoenzyme

    No full text
    SOD1 is an antioxidant enzyme that exists as a highly stable dimer in healthy humans. Each subunit contains an intramolecular disulfide bond and coordinates one zinc and one copper ion. The dimer is destabilized in the absence of the ions and disruption of the disulfide bond, which leads to the formation of small oligomers and subsequently larger insoluble aggregates. An acquired toxic function of destabilized SOD1 is postulated to be associated with amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disease characterized by peripheral and central paralysis and by 3‐ to 5‐year median survival after diagnosis. In this study, we present a protocol for heterologous expression of human SOD1 in E. coli and total reconstitution of the holoenzyme, which exhibits the highest reported specific activity (four‐fold higher) of recombinant hSOD1. Biophysical characterization confirms the native state of this protein. The presented protocol provides highly active hSOD1 that will benefit in vitro investigations of this protein

    In Vitro Reconstitution of the Highly Active and Natively Folded Recombinant Human Superoxide Dismutase 1 Holoenzyme

    No full text
    SOD1 is an antioxidant enzyme that exists as a highly stable dimer in healthy humans. Each subunit contains an intramolecular disulfide bond and coordinates one zinc and one copper ion. The dimer is destabilized in the absence of the ions and disruption of the disulfide bond, which leads to the formation of small oligomers and subsequently larger insoluble aggregates. An acquired toxic function of destabilized SOD1 is postulated to be associated with amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disease characterized by peripheral and central paralysis and by 3‐ to 5‐year median survival after diagnosis. In this study, we present a protocol for heterologous expression of human SOD1 in E. coli and total reconstitution of the holoenzyme, which exhibits the highest reported specific activity (four‐fold higher) of recombinant hSOD1. Biophysical characterization confirms the native state of this protein. The presented protocol provides highly active hSOD1 that will benefit in vitro investigations of this protein

    Discovery of all-D-peptide inhibitors of SARS CoV 2 3C-like protease

    No full text
    During the replication process of SARS-CoV-2 the main protease of the virus (3-chymotrypsin-like protease (3CLpro)) plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or non-competetive mode, in the low µM range. From the most efficient L-peptides obtained from the phage display, we designed all-D-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low µM range, and in combination even in the sub-micromolar range. The inhibition modes of these D-ri peptides were the same as their respective L-peptide versions. Our results demonstrate that retro-inverso obtained all-D-peptides interact with high-affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential as therapeutic agents. The here described D-ri peptides address limitations associated with current L-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent D-peptides to be used for the prevention and treatment of COVID-19

    Ligand-Induced Stabilization of the Native Human Superoxide Dismutase 1

    No full text
    A common characteristic of familial (fALS) and sporadic amyotrophic lateral sclerosis (sALS) is the accumulation of aberrant proteinaceous species in the motor neurons and spinal cord of ALS patients—including aggregates of the human superoxide dismutase 1 (hSOD1). hSOD1 is an enzyme that occurs as a stable dimeric protein with several post-translational modifications such as the formation of an intramolecular disulfide bond and the acquisition of metal cofactors that are essential for enzyme activity and further contribute to protein stability. Some mutations and/or destabilizing factors promote hSOD1 misfolding, causing neuronal death. Aggregates containing misfolded wild-type hSOD1 have been found in the spinal cords of sALS as well as in non-hSOD1 fALS patients, leading to the hypothesis that hSOD1 misfolding is a common part of the ALS pathomechanism. Therefore, stabilizing the native conformation of SOD1 may be a promising approach to prevent the formation of toxic hSOD1 species and thus ALS pathogenesis. Here, we present the 16-mer peptide S1VL-21 that interferes with hSOD1 aggregation. S1VL-21 was identified by phage display selection with the native conformation of hSOD1 as a target. Several methods such as microscale thermophoresis (MST) measurements, aggregation assays, and cell viability assays revealed that S1VL-21 has a micromolar binding affinity to native hSOD1 and considerably reduces the formation of hSOD1 aggregates. This present work therefore provides the first important data on a potential lead compound for hSOD1-related drug development for ALS therapy

    Discovery of all-D-peptide inhibitors of SARS CoV 2 3C-like protease

    No full text
    During the replication process of SARS-CoV-2 the main protease of the virus (3-chymotrypsin-like protease (3CLpro)) plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or non-competetive mode, in the low µM range. From the most efficient L-peptides obtained from the phage display, we designed all-D-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low µM range, and in combination even in the sub-micromolar range. The inhibition modes of these D-ri peptides were the same as their respective L-peptide versions. Our results demonstrate that retro-inverso obtained all-D-peptides interact with high-affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential as therapeutic agents. The here described D-ri peptides address limitations associated with current L-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent D-peptides to be used for the prevention and treatment of COVID-19

    Discovery of All- d -Peptide Inhibitors of SARS-CoV-2 3C-like Protease

    No full text
    During the replication process of SARS-CoV-2, the main protease of the virus [3-chymotrypsin-like protease (3CLpro)] plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next-generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or noncompetitive mode, in the low μM range. From the most efficient l-peptides obtained from the phage display, we designed all-d-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low μM range and in combination, even in the sub-micromolar range. Additionally, the combination with Rutinprivir decreases 10-fold the IC50 value of the competitive inhibitor. The inhibition modes of these d-ri peptides were the same as their respective l-peptide versions. Our results demonstrate that retro-inverso obtained all-d-peptides interact with high affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential for further development toward therapeutic agents. The here described d-ri peptides address limitations associated with current l-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent d-peptides to be used for the prevention and treatment of COVID-19
    corecore