26 research outputs found

    Fractality of certain quantum states

    Full text link
    We prove the theorem announced in Phys. Rev. Lett. {\bf 85}:5022, 2001 concerning the existence and properties of fractal states for the Schr\"odinger equation in the infinite one-dimensional well.Comment: Latex2e with svjour clas

    Signal statistics of phase dependent optical time domain reflectometry

    Get PDF
    The statistics of the phase dependent optical time-domain reflectometer have been analyzed. The optical fiber is modeled by the use of a discrete set of reflectors positioned randomly along the fiber. The statistics of the reflected light from a traveling pulse are derived. The statistics of the signal are used to calculate the characteristics of shot noise in the photodetector, and the probability that noise of certain intensity will occur. An estimation of the backscattered power is made by calculating the fraction of the backscattered power that is captured in a guiding mode. Upper power limits are calculated by considering nonlinear optical effects. An estimation of noise from thermally excited sound waves, amplified by Brillouin scattering, is derived. This noise considers the parameters of a photodetector, giving a model for the noise in the measurable photocurrent. Two models are used to describe the fading probability of the signal. The first model, based on the Fabry-Perot interferometer with a random phase perturbation in the middle, is used to calculate the probability that the whole signal vanishes for any value of phase perturbation. The second model, by calculating the correlation between two signals, one perturbed and one unperturbed, predicts the fading of the signal of interest. The present work gives the theoretical basis for the phase dependant Optical Time Domain Reflectometry, allowing its optimization and setting the fundamental limitations to the performance of the system

    Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    No full text
    Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH) of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors

    Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    No full text
    Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation). For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2) in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients

    Classification of Cell-in-Cell Structures: Different Phenomena with Similar Appearance

    No full text
    A phenomenon known for over 100 years named “cell-in-cell” (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell–cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms

    Maternal plasma and amniotic fluid chemokines screening

    No full text
    Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th-18th weeks of gestation). For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2) in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients
    corecore