926 research outputs found

    DeepShadow: Neural Shape from Shadow

    Full text link
    This paper presents DeepShadow, a one-shot method for recovering the depth map and surface normals from photometric stereo shadow maps. Previous works that try to recover the surface normals from photometric stereo images treat cast shadows as a disturbance. We show that the self and cast shadows not only do not disturb 3D reconstruction, but can be used alone, as a strong learning signal, to recover the depth map and surface normals. We demonstrate that 3D reconstruction from shadows can even outperform shape-from-shading in certain cases. To the best of our knowledge, our method is the first to reconstruct 3D shape-from-shadows using neural networks. The method does not require any pre-training or expensive labeled data, and is optimized during inference time

    Introduction to Personalized Medicine in Diabetes Mellitus

    Get PDF
    The world is facing an epidemic rise in diabetes mellitus (DM) incidence, which is challenging health funders, health systems, clinicians, and patients to understand and respond to a flood of research and knowledge. Evidence-based guidelines provide uniform management recommendations for ?average? patients that rarely take into account individual variation in susceptibility to DM, to its complications, and responses to pharmacological and lifestyle interventions. Personalized medicine combines bioinformatics with genomic, proteomic, metabolomic, pharmacogenomic (?omics?) and other new technologies to explore pathophysiology and to characterize more precisely an individual?s risk for disease, as well as response to interventions. In this review we will introduce readers to personalized medicine as applied to DM, in particular the use of clinical, genetic, metabolic, and other markers of risk for DM and its chronic microvascular and macrovascular complications, as well as insights into variations in response to and tolerance of commonly used medications, dietary changes, and exercise. These advances in ?omic? information and techniques also provide clues to potential pathophysiological mechanisms underlying DM and its complications

    Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    Get PDF
    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects
    • โ€ฆ
    corecore