62 research outputs found

    Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH- gradient bioreactor

    Get PDF
    Almost all the known isolates of acidophilic or acid-tolerant sulphate-reducing bacteria (SRB) belong to the spore-forming genus Desulfosporosinus in the Firmicutes. The objective of this study was to isolate acidophilic/acid-tolerant members of the genus Desulfovibrio belonging to deltaproteobacterial SRB. The sample material originated from microbial mat biomass submerged in mine water and was enriched for sulphate reducers by cultivation in anaerobic medium with lactate as an electron donor. A stirred tank bioreactor with the same medium composition was inoculated with the sulphidogenic enrichment. The bioreactor was operated with a temporal pH gradient, changing daily, from an initial pH of 7.3 to a final pH of 3.7. Among the bacteria in the bioreactor culture, Desulfovibrio was the only SRB group retrieved from the bioreactor consortium as observed by 16S rRNA-targeted denaturing gradient gel electrophoresis. Moderately acidophilic/acid-tolerant isolates belonged to Desulfovibrio aerotolerans - Desulfovibrio carbinophilus - Desulfovibrio magneticus and Desulfovibrio idahonensis - Desulfovibrio mexicanus clades within the genus Desulfovibrio. A moderately acidophilic strain, Desulfovibrio sp. VK (pH optimum 5.7) and acid-tolerant Desulfovibrio sp. ED (pH optimum 6.6) dominated in the bioreactor consortium at different time points and were isolated in pure cultur

    The complete mitochondrial genome of the acid-tolerant fungus Penicillium ShG4C

    Get PDF
    AbstractComplete mitochondrial genome of the acid-tolerant fungus Penicillium ShG4C, isolated from oxidized sediments of an abandoned polymetallic mine site, has been sequenced using high-throughput sequencing approach. The mitochondrial genome represents a circular DNA molecule with size of 26,725bp. It encodes a usual set of mitochondrial genes, including 15 protein coding genes, large and small ribosomal RNAs and 27 tRNA genes. All genes are located on H-strand DNA and transcribed in one direction. Taxonomic analysis based on concatenated sequences of mitochondrial proteins confirmed taxonomic position of this fungus within the genus Penicillium. The sequence of the complete mitochondrial genome of Penicillium ShG4C was deposited in DBBJ/EMBL/GenBank under accession number KX931017

    Lignite coal burning seam in the remote Altai Mountains harbors a hydrogen-driven thermophilic microbial community

    Get PDF
    Thermal ecosystems associated with underground coal combustion sites are rare and less studied than geothermal features. Here we analysed microbial communities of near-surface ground layer and bituminous substance in an open quarry heated by subsurface coal fire by metagenomic DNA sequencing. Taxonomic classification revealed dominance of only a few groups of Firmicutes. Near-complete genomes of three most abundant species, ‘Candidatus Carbobacillus altaicus’ AL32, Brockia lithotrophica AL31, and Hydrogenibacillus schlegelii AL33, were assembled. According to the genomic data, Ca. Carbobacillus altaicus AL32 is an aerobic heterotroph, while B. lithotrophica AL31 is a chemolithotrophic anaerobe assimilating CO2 via the Calvin cycle. H. schlegelii AL33 is an aerobe capable of both growth on organic compounds and carrying out CO2 fixation via the Calvin cycle. Phylogenetic analysis of the large subunit of RuBisCO of B. lithotrophica AL31 and H. schlegelii AL33 showed that it belongs to the type 1-E. All three Firmicutes species can gain energy from aerobic or anaerobic oxidation of molecular hydrogen, produced as a result of underground coal combustion along with other coal gases. We propose that thermophilic Firmicutes, whose spores can spread from their original geothermal habitats over long distances, are the first colonizers of this recently formed thermal ecosystem

    Genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia

    Get PDF
    Here we report the draft genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. The draft genome has a size of 4.9 Mb and encodes multiple K+-transporters and proton-consuming decarboxylases. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain DV clusters together with the acid-tolerant Desulfovibrio sp. TomC and Desulfovibrio magneticus. The draft genome sequence and annotation have been deposited at GenBank under the accession number MLBG00000000

    Genome sequence of the copper resistant and acid-tolerant Desulfosporosinus sp. BG isolated from the tailings of a molybdenum-tungsten mine in the Transbaikal area

    Get PDF
    Here, we report on the draft genome of a copper-resistant and acidophilic Desulfosporosinus sp. BG, isolated from the tailings of a molybdenum-tungsten mine in Transbaikal area. The draft genome has a size of 4.52 Mb and encodes transporters of heavy metals. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain BG clusters together with the other acidophilic copper-resistant strains Desulfosporosinus sp. OT and Desulfosporosinus sp. I2. The K+-ATPase, Na+/H+ antiporter and amino acid decarboxylases may participate in enabling growth at low pH. The draft genome sequence and annotation have been deposited at GenBank under the accession number NZ_MASS00000000

    Isolation, characterization, and metal response of novel, acid-tolerant Penicillium spp. from extremely metal-rich waters at a mining site in Transbaikal (Siberia, Russia)

    Get PDF
    The role of fungi in metal cycling in acidic environments has been little explored to date. In this study, two acid-tolerant and metal-resistant Penicillium isolates, strains ShG4B and ShG4C, were isolated from a mine site in the Transbaikal area of Siberia (Russia). Waters at the mine site were characterized by extremely high metal concentrations: up to 18 g l−1 Fe and >2 g l−1 each of Cu, Zn, Al, and As. Both isolates were identified as Penicillium spp. by phylogenetic analyses and they grew well in Czapek medium acidified to pH 2.5. Resistance to Cu, Cd, Ni, Co, and arsenate was in the range of 1–10 g l−1. Further experiments with Penicillium strain ShG4C demonstrated that growth in Cu-containing media was accompanied by the precipitation of Cu-oxalate (moolooite) and the formation of extracellular vesicles enriched in Cu on the mycelia. Vesicles were greatly reduced in size in Cd-containing media and were not formed in the presence of Ni or Co. Cd-oxalate was detected as a crystalline solid phase in Cd-exposed mycelia. Hydrated Nisulfate (retgersite) and Co-sulfate (bieberite) were detected in mycelia grown in the presence of Ni and Co, respectively. The results demonstrated that acid-tolerant and metal-resistant Penicillium constitute a component in extremophilic microbiomes, contributing to organic matter breakdown and formation of secondary solid phases at pH ranges found in acid rock drainage

    The low-temperature germinating spores of the thermophilic Desulfofundulus contribute to an extremely high sulfate reduction in burning coal seams

    Get PDF
    Burning coal seams, characterized by massive carbon monoxide (CO) emissions, the presence of secondary sulfates, and high temperatures, represent suitable environments for thermophilic sulfate reduction. The diversity and activity of dissimilatory sulfate reducers in these environments remain unexplored. In this study, using metagenomic approaches, in situ activity measurements with a radioactive tracer, and cultivation we have shown that members of the genus Desulfofundulus are responsible for the extremely high sulfate reduction rate (SRR) in burning lignite seams in the Altai Mountains. The maximum SRR reached 564 ± 21.9 nmol S cm−3 day−1 at 60°C and was of the same order of magnitude for both thermophilic (60°C) and mesophilic (23°C) incubations. The 16S rRNA profiles and the search for dsr gene sequences in the metagenome revealed members of the genus Desulfofundulus as the main sulfate reducers. The thermophilic Desulfofundulus sp. strain Al36 isolated in pure culture, did not grow at temperatures below 50°C, but produced spores that germinated into metabolically active cells at 20 and 15°C. Vegetative cells germinating from spores produced up to 0.738 ± 0.026 mM H2S at 20°C and up to 0.629 ± 0.007 mM H2S at 15°C when CO was used as the sole electron donor. The Al36 strain maintains significant production of H2S from sulfate over a wide temperature range from 15°C to 65°C, which is important in variable temperature biotopes such as lignite burning seams. Burning coal seams producing CO are ubiquitous throughout the world, and biogenic H2S may represent an overlooked significant flux to the atmosphere. The thermophilic spore outgrowth and their metabolic activity at temperatures below the growth minimum may be important for other spore-forming bacteria of environmental, industrial and clinical importance

    Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study

    Get PDF
    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50oC. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within five years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles

    Enrichment and isolation of acidophilic microorganisms from sediments of gold mine waste leachate

    No full text
    Microorganisms living in acidic environments associated with various types of mining wastes can be used for bioremediation of acid mine drainage (AMD) and related waste streams. We studied microbial diversity of the acidic sediments of a leachate puddle at the basement of a waste rock pile from gold mining in abandoned gold deposit in Martiga (Kemerovo region, West Siberia, Russia). The enrichments were established from four sediment samples with a pH ranging from 2.29 to 6.16. The enrichments cultures were set up at aerobic and anaerobic conditions. Pure cultures of bacteria involved in iron and sulfur oxidation were isolated. The isolated iron- and sulfur-oxidizing cultures were affiliated with Acidithiobacillus and Acidocella genera as was revealed by 16S rRNA gene sequencing. Strains of Desulfosporosinus-like spore-forming bacteria were isolated under anaerobic conditions. The pure culture isolates physiological and biochemical characterization is underway, which will provide new knowledge of AMD formation and natural processes of metal attenuation. The strains can also be prospective agents for use in bioleaching and bioremediation processes
    corecore