27 research outputs found

    A concurrent error detection based fault-tolerant 32 nm XOR-XNOR circuit implementation

    Get PDF
    As modern processors and semiconductor circuits move into 32 nm technologies and below, designers face the major problem of process variations. This problem makes designing VLSI circuits harder and harder, affects the circuit performance and introduces faults that can cause critical failures. Therefore, fault-tolerant design is required to obtain the necessary level of reliability and availability especially for safety-critical systems. Since XOR-XNOR circuits are basic building blocks in various digital and mixed systems, especially in arithmetic circuits, these gates should be designed such that they indicate any malfunction during normal operation. In fact, this property of verifying the results delivered by a circuit during its normal operation is called Concurrent Error Detection (CED). In this paper, we propose a CED based fault- tolerant XOR-XNOR circuit implementation. The proposed design is performed using the 32 nm process technology.published_or_final_versio

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study

    Get PDF
    Gold nanoparticles ( 3c5 nm) coated with plasma-polymerized allylamine were produced through plasma vapor deposition and bioconjugated with a monoclonal antibody targeting the epidermal growth factor receptor. The resulting nanoconjugates displayed an antibody loading of about 1.7 nmol mg -1 and efficiently target epidermal growth factor receptor overexpressing cell lines, as ascertained by ELISA and Western blot assays. The in vitro targeting properties were also confirmed in vivo, where a similar biodistribution profile of what was experienced for the unconjugated antibody was observed. Thanks to the possibility of doping the gold nanoparticles with radionuclides during plasma vapor deposition, the proposed functionalization strategy represents a very suitable platform for the in vivo cancer targeting with nanosized multifunctional particles. This journal is \ua9 2012 The Royal Society of Chemistry

    Civic Nationalism and Language-in-Education Policies in the United Arab Emirates

    Get PDF
    A founding principle of the United Arab Emirates is the belief that tolerance promotes peace, while isolation encourages division and conflict. With more than 200 nationalities residing in the UAE, Emiratis constitute only 10% of the population, making them a minority in their own country. Despite the government promoting diversity and tolerance as the norm, such demographic imbalance come with a cost to the Arabic language, the national identity and culture, and the education system. This chapter addresses those concerns through a series of recent government initiatives. The author classifies neo-nationalist movements into different types, arguing that the one in the UAE largely fits within the civic type with its non-hostile, overall welcoming attitude toward foreigners. At the end of the chapter, she discusses the impact of neo-nationalism on education and calls for clearer policies that take into account language(s) as a right and as a resource

    YscP, a Yersinia protein required for Yop secretion that is surface exposed, and released in low Ca2+

    No full text
    The Yersinia Ysc apparatus is made of more than 20 proteins, 11 of which have homologues in many type III systems. Here, we characterize YscP from Yersinia enterocolitica. This 515-residue protein has a high proline content, a large tandem repetition and a slow migration in SDS-PAGE. Unlike the products of neighbouring genes, it has a counterpart only in Pseudomonas aeruginosa and it varies even between Yersinia Ysc machineries. An yscPDelta97-465 mutant was unable to secrete any Yop, even under conditions overcoming feedback inhibition of Yop synthesis. Interestingly, a cloned yscPDelta57-324 from Yersinia pestis introduced in the yscPDelta97-465 mutant can sustain a significant Yop secretion and thus partially complemented the mutation. This explains the leaky phenotype observed with the yscP mutant of Y. pestis. In accordance with this secretion deficiency, YscP is required for the delivery of Yop effectors into macrophages. Mechanical shearing, immunolabelling and electron microscopy experiments showed that YscP is exposed at the bacterial surface when bacteria are incubated at 37 degrees C in the presence of Ca2+ and thus do not secrete Yops. At 37 degrees C, when Ca2+ ions are chelated, YscP is released like a Yop protein. We conclude that YscP is a part of the Ysc injectisome which is localized at the bacterial surface and is destabilized by Ca2+ chelation

    89Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy

    No full text
    Antibody-labeled gold nanoparticles represent an attractive tool for cancer imaging and therapy. In this study, the anti-CD105 antibody was conjugated with gold nanoparticles (AuNPs) for the first time. The antibody biodistribution in mice before and after conjugation to AuNPs was studied, with a focus on tumor targeting. Materials & methods: Antibodies were radiolabeled with 89Zr before conjugation to AuNPs (5 nm). Immunonanoconjugates were characterized in vitro in terms of size, stability in plasma and binding to the target. Quantitative PET imaging and ICP-MS analysis assessed in vivo distribution and specific tumor targeting of tracers. Results: The tumor uptake of immunoconjugates was preserved up to 24 h after injection, with high tumor contrast and selective tumor targeting. No major tracer accumulation was observed over time in nonspecific organs. ICP-MS analysis confirmed the antibody specificity after nanoparticl
    corecore