1,376 research outputs found

    Measurement of Interfacial Shear Mechanical Properties in Thermal Barrier Coating Systems by a Barb Pullout Method

    Get PDF
    A test technique has been developed to facilitate evaluation of the fracture characteristics of coatings and interfaces in thermal barrier coating (TBC) systems. The methodology has particular application in analyzing delamination crack growth, where crack propagation occurs under predominantly mode II loading. The technique has been demonstrated by quantitatively measuring the effective delamination fracture resistance of an electron-beam physical vapor deposition TBC

    Childhood and Parental Asthma, Future Risk of Bipolar Disorder and Schizophrenia Spectrum Disorders: A Population-Based Cohort Study

    Get PDF
    BACKGROUND: Mounting evidence implicates early life and prenatal immune disturbances in the etiology of severe mental illnesses. Asthma is a common illness associated with chronic aberrant immune responses. We aimed to determine if asthma in childhood and parents is associated with bipolar and schizophrenia spectrum disorders. METHODS: A cohort study including all children born in Sweden 1973–1995 (N > 2 million) assessing associations between childhood hospitalization for asthma, parental asthma during and pre-pregnancy, and subsequent bipolar and schizophrenia spectrum disorders. RESULTS: Children with hospitalizations for asthma between 11 and 15 years had increased rates of bipolar (adjusted hazard ratio [aHR] = 1.73, 95% confidence interval [CI] = 1.21–2.47) and schizophrenia spectrum disorders (aHR = 1.62, 95% CI = 1.08–2.42). However, there was no association with asthma before aged 11. These results were supported by an analysis of siblings discordant for asthma. We found an association between both maternal and paternal asthma and bipolar disorder (aHR = 1.60, 95% CI = 1.27–2.02, and aHR = 1.44, 95% CI = 1.08–1.93, respectively), but not between parental asthma and schizophrenia spectrum disorders. CONCLUSIONS: As far as we are aware, this is the first study to find increased risk of bipolar disorder in children of individuals with asthma. Asthma admissions before aged 11 do not appear to be linked to bipolar or schizophrenia spectrum disorders. Taken together, our results do not suggest a straightforward link between asthma and severe mental illness via neurodevelopmental effects of inflammation, but potentially there is shared genetic vulnerability. This finding has implications for understanding the differential pathogenic mechanisms of bipolar and schizophrenia spectrum disorders

    Atmospheric parameters in a subtropical cloud regime transition derived by AIRS and MODIS: observed statistical variability compared to ERA-Interim

    Get PDF
    Cloud occurrence, microphysical and optical properties, and atmospheric profiles within a subtropical cloud regime transition in the northeastern Pacific Ocean are obtained from a synergistic combination of the Atmospheric Infrared Sounder (AIRS) and the MODerate resolution Imaging Spectroradiometer (MODIS). The observed cloud parameters and atmospheric thermodynamic profile retrievals are binned by cloud type and analyzed based on their probability density functions (PDFs). Comparison of the PDFs to data from the European Centre for Medium Range Weather Forecasting reanalysis (ERA-Interim) shows a strong difference in the occurrence of the different cloud types compared to clear sky. An increasing non-Gaussian behavior is observed in cloud optical thickness (&tau;<sub>c</sub>), effective radius (<i>r</i><sub>e</sub>) and cloud-top temperature (<i>T</i><sub>c</sub>) distributions from stratocumulus to trade cumulus, while decreasing values of lower-tropospheric stability are seen. However, variations in the mean, width and shape of the distributions are found. The AIRS potential temperature (&theta;) and water vapor (<i>q</i>) profiles in the presence of varying marine boundary layer (MBL) cloud types show overall similarities to the ERA-Interim in the mean profiles, but differences arise in the higher moments at some altitudes. The differences between the PDFs from AIRS+MODIS and ERA-Interim make it possible to pinpoint systematic errors in both systems and help to understand joint PDFs of cloud properties and coincident thermodynamic profiles from satellite observations

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of <it>BZLF1 </it>and <it>BRLF1 </it>promoters (Zp and Rp) in tumor samples.</p> <p>Methods</p> <p>We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as <it>BZLF1 </it>and <it>BRLF1 </it>expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins.</p> <p>Results</p> <p>We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing <it>BZLF1 </it>and <it>BRLF1</it>. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of <it>BZLF1 </it>and <it>BRLF1 </it>was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene <it>BHRF1 </it>and late lytic gene <it>BLLF1</it>.</p> <p>Conclusions</p> <p>Hypermethylation of Zp and Rp mediates the frequent silencing of <it>BZLF1 </it>and <it>BRLF1 </it>in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.</p

    The effect of compressive strain on the Raman modes of the dry and hydrated BaCe0.8Y0.2O3 proton conductor

    Full text link
    The BaCe0.8Y0.2O3-{\delta} proton conductor under hydration and under compressive strain has been analyzed with high pressure Raman spectroscopy and high pressure x-ray diffraction. The pressure dependent variation of the Ag and B2g bending modes from the O-Ce-O unit is suppressed when the proton conductor is hydrated, affecting directly the proton transfer by locally changing the electron density of the oxygen ions. Compressive strain causes a hardening of the Ce-O stretching bond. The activation barrier for proton conductivity is raised, in line with recent findings using high pressure and high temperature impedance spectroscopy. The increasing Raman frequency of the B1g and B3g modes thus implies that the phonons become hardened and increase the vibration energy in the a-c crystal plane upon compressive strain, whereas phonons are relaxed in the b-axis, and thus reveal softening of the Ag and B2g modes. Lattice toughening in the a-c crystal plane raises therefore a higher activation barrier for proton transfer and thus anisotropic conductivity. The experimental findings of the interaction of protons with the ceramic host lattice under external strain may provide a general guideline for yet to develop epitaxial strained proton conducting thin film systems with high proton mobility and low activation energy

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure

    Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction

    Get PDF
    Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER
    corecore