9,727 research outputs found
Male chicken thigh meat quality from fast and slow growing breeds from an organic free-range system
Significant effects of Genotype and Age on several of the technological meat quality attributes measured were found. In general, the meat from fast growing birds (JA) was darker, more tender, had a higher water-binding but a higher cooking loss. Birds with a higher age at slaughter was more red, less tender and had a higher cooking loss. Regarding the protein concentration of the feed, no significant effects could be found on meat quality attributes, however a high protein concentration in the feed showed a tendency towards more tender meat
Mn induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects
Using synchrotron based photoemission, we have investigated the Mn-induced
changes in Ga 3d core level spectra from as-grown . Although Mn is located in Ga substitutional sites, and does
therefore not have any Ga nearest neighbours, the impact of Mn on the Ga core
level spectra is pronounced even at Mn concentrations in the range of 0.5%. The
analysis shows that each Mn atom affects a volume corresponding to a sphere
with around 1.4 nm diameter.Comment: Submitted to Physical Review B, Brief Repor
Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite
Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968
Validation of Shielding Effectiveness Measurement Method Using Nested Reverberation Chambers by Comparison with Aperture Theory
In this paper we revisit existing methods for measuring the shielding effectiveness of material samples using nested reverberation chambers. These methods have the advantage of exposing the sample with a more realistic environment than other methods that are based on single plane wave excitation. That is, in the reverberation chamber the sample is exposed to fields with different incidence directions and polarizations resulting in that the average shielding effectiveness can be measured. We show by comparison with aperture theory that the measured shielding effectiveness corresponds to the theoretical value. We show also by measurements that a corrugation or choke on the periphery of an aperture can be used for increasing the shielding effectiveness for a narrow frequency range
Parameterization of the Angular Distribution of Gamma Rays Produced by p-p Interaction in Astronomical Environment
We present the angular distribution of gamma rays produced by proton-proton
interactions in parameterized formulae to facilitate calculations in
astrophysical environments. The parameterization is derived from Monte Carlo
simulations of the up-to-date proton-proton interaction model by Kamae et al.
(2005) and its extension by Kamae et al. (2006). This model includes the
logarithmically rising inelastic cross section, the diffraction dissociation
process and Feynman scaling violation. The extension adds two baryon resonance
contributions: one representing the Delta(1232) and the other representing
multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae
by calculating the predicted gamma-ray spectrum for two different cases: the
first is a pencil beam of protons following a power law and the second is a
fanned proton jet with a Gaussian intensity profile impinging on the
surrounding material. In both cases we find that the predicted gamma-ray
spectrum to be dependent on the viewing angle.Comment: 8 pages, 7 figures, figure 7 updated, accepted for publication in
ApJ, text updated to match changes by the editor, two refs updated from
preprints to full journal
Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency \u3c 0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care
GW approximation with self-screening correction
The \emph{GW} approximation takes into account electrostatic self-interaction
contained in the Hartree potential through the exchange potential. However, it
has been known for a long time that the approximation contains self-screening
error as evident in the case of the hydrogen atom. When applied to the hydrogen
atom, the \emph{GW} approximation does not yield the exact result for the
electron removal spectra because of the presence of self-screening: the hole
left behind is erroneously screened by the only electron in the system which is
no longer present. We present a scheme to take into account self-screening and
show that the removal of self-screening is equivalent to including exchange
diagrams, as far as self-screening is concerned. The scheme is tested on a
model hydrogen dimer and it is shown that the scheme yields the exact result to
second order in where and are respectively
the onsite and offsite Hubbard interaction parameters and the hopping
parameter.Comment: 9 pages, 2 figures; Submitted to Phys. Rev.
On Establishing Elastic–Plastic Properties of a Sphere by Indentation Testing
Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on finite element analysis is used, where non-dimensional characteristic functions derived from the force–displacement response are utilized to determine the elastic modulus and yield strength. To investigate the accuracies of the proposed methodologies, selected numerical experiments have been performed and excellent agreement was obtained
- …