50 research outputs found

    Dialysis and pediatric acute kidney injury: choice of renal support modality

    Get PDF
    Dialytic intervention for infants and children with acute kidney injury (AKI) can take many forms. Whether patients are treated by intermittent hemodialysis, peritoneal dialysis or continuous renal replacement therapy depends on specific patient characteristics. Modality choice is also determined by a variety of factors, including provider preference, available institutional resources, dialytic goals and the specific advantages or disadvantages of each modality. Our approach to AKI has benefited from the derivation and generally accepted defining criteria put forth by the Acute Dialysis Quality Initiative (ADQI) group. These are known as the risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria. A modified pediatrics RIFLE (pRIFLE) criteria has recently been validated. Common defining criteria will allow comparative investigation into therapeutic benefits of different dialytic interventions. While this is an extremely important development in our approach to AKI, several fundamental questions remain. Of these, arguably, the most important are “When and what type of dialytic modality should be used in the treatment of pediatric AKI?” This review will provide an overview of the limited data with the aim of providing objective guidelines regarding modality choice for pediatric AKI. Comparisons in terms of cost, availability, safety and target group will be reviewed

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Comparison of the magnetic resonance imaging and acoustocerebrography signals in the assessment of focal cerebral microangiopathic lesions in patients with asymptomatic atrial fibrillation. (Preliminary clinical study results)

    No full text
    Acoustocerebrography (ACG) is a set of techniques designed to capture states of human brain tissue, and its changes. It is based on noninvasive measurements of various parameters obtained by analyzing an ultrasound pulse emitted through the human’s skull. ACG and Magnetic Resonance Imaging (MRI) results were compared in a clinical study assessment of focal white-matter-lesions (WML) in the brains of patients with asymptomatic atrial fibrillation (AAF). The clinical study included 55 patients (age 66.1 ± 6.7 years). According to MRI data, the patients were assigned into four groups depending on the number of lesions: L0 - 0 to 4 lesions, L5 - 5 to 9 lesions, L10 - 10 to 29 lesions, and L30 - 30 or more lesions. As a result, it has been concluded that the ACG method could clearly differentiate the groups L0 (with 0 ÷ 4 lesions) and L30 (with more than 30 lesions) of WML patients. Fisher’s Exact Test shows that this correlation is highly significant (p < 0.001). ACG seems to be a new, effective, method for detecting WML for patients with AAF and can become increasingly useful in both diagnosing, and in stratifying, them. This, in turn, can be helpful in individualizing their treatment, so that the risk of strokes may become essentially reduced
    corecore